Cargando…

The influence of strain on image reconstruction in Bragg coherent X-ray diffraction imaging and ptychography

A quantitative analysis of the effect of strain on phase retrieval in Bragg coherent X-ray diffraction imaging is reported. It is shown in reconstruction simulations that the phase maps of objects with strong step-like phase changes are more precisely retrieved than the corresponding modulus values....

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Chan, Scholz, Markus, Madsen, Anders
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8284403/
https://www.ncbi.nlm.nih.gov/pubmed/34212879
http://dx.doi.org/10.1107/S160057752100477X
Descripción
Sumario:A quantitative analysis of the effect of strain on phase retrieval in Bragg coherent X-ray diffraction imaging is reported. It is shown in reconstruction simulations that the phase maps of objects with strong step-like phase changes are more precisely retrieved than the corresponding modulus values. The simulations suggest that the reconstruction precision for both phase and modulus can be improved by employing a modulus homogenization (MH) constraint. This approach was tested on experimental data from a highly strained Fe–Al crystal which also features antiphase domain boundaries yielding characteristic π phase shifts of the (001) superlattice reflection. The impact of MH is significant and this study outlines a successful method towards imaging of strong phase objects using the next generation of coherent X-ray sources, including X-ray free-electron lasers.