Cargando…
Machine learning liver-injuring drug interactions with non-steroidal anti-inflammatory drugs (NSAIDs) from a retrospective electronic health record (EHR) cohort
Drug-drug interactions account for up to 30% of adverse drug reactions. Increasing prevalence of electronic health records (EHRs) offers a unique opportunity to build machine learning algorithms to identify drug-drug interactions that drive adverse events. In this study, we investigated hospitalizat...
Autores principales: | Datta, Arghya, Flynn, Noah R., Barnette, Dustyn A., Woeltje, Keith F., Miller, Grover P., Swamidass, S. Joshua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8284671/ https://www.ncbi.nlm.nih.gov/pubmed/34228716 http://dx.doi.org/10.1371/journal.pcbi.1009053 |
Ejemplares similares
-
Editorial: Advancements in computational studies of drug toxicity
por: Flynn, Noah R., et al.
Publicado: (2023) -
Discovery of Novel Reductive Elimination Pathway for 10-Hydroxywarfarin
por: Pouncey, Dakota L., et al.
Publicado: (2022) -
Modeling Epoxidation of Drug-like Molecules with a
Deep Machine Learning Network
por: Hughes, Tyler B., et al.
Publicado: (2015) -
The use of non-steroidal anti-inflammatory drugs (NSAIDs) in COVID-19
por: Kushner, Pamela, et al.
Publicado: (2022) -
Effects of Non-steroidal Anti-inflammatory Drugs (NSAIDs) and Gastroprotective NSAIDs on the Gastrointestinal Tract: A Narrative Review
por: Sohail, Rohab, et al.
Publicado: (2023)