Cargando…

Indeterminate thyroid cytology: detecting malignancy using analysis of nuclear images

BACKGROUND: Thyroid nodules diagnosed as 'atypia of undetermined significance/follicular lesion of undetermined significance' (AUS/FLUS) or 'follicular neoplasm/suspected follicular neoplasm' (FN/SFN), according to Bethesda’s classification, represent a challenge in clinical prac...

Descripción completa

Detalles Bibliográficos
Autores principales: Hayashi, Caroline Y, Jaune, Danilo T A, Oliveira, Cristiano C, Coelho, Bárbara P, Miot, Hélio A, Marques, Mariângela E A, Tagliarini, José Vicente, Castilho, Emanuel C, Soares, Carlos S P, Oliveira, Flávia R K, Soares, Paula, Mazeto, Gláucia M F S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bioscientifica Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8284953/
https://www.ncbi.nlm.nih.gov/pubmed/34077391
http://dx.doi.org/10.1530/EC-20-0648
_version_ 1783723479772692480
author Hayashi, Caroline Y
Jaune, Danilo T A
Oliveira, Cristiano C
Coelho, Bárbara P
Miot, Hélio A
Marques, Mariângela E A
Tagliarini, José Vicente
Castilho, Emanuel C
Soares, Carlos S P
Oliveira, Flávia R K
Soares, Paula
Mazeto, Gláucia M F S
author_facet Hayashi, Caroline Y
Jaune, Danilo T A
Oliveira, Cristiano C
Coelho, Bárbara P
Miot, Hélio A
Marques, Mariângela E A
Tagliarini, José Vicente
Castilho, Emanuel C
Soares, Carlos S P
Oliveira, Flávia R K
Soares, Paula
Mazeto, Gláucia M F S
author_sort Hayashi, Caroline Y
collection PubMed
description BACKGROUND: Thyroid nodules diagnosed as 'atypia of undetermined significance/follicular lesion of undetermined significance' (AUS/FLUS) or 'follicular neoplasm/suspected follicular neoplasm' (FN/SFN), according to Bethesda’s classification, represent a challenge in clinical practice. Computerized analysis of nuclear images (CANI) could be a useful tool for these cases. Our aim was to evaluate the ability of CANI to correctly classify AUS/FLUS and FN/SFN thyroid nodules for malignancy. METHODS: We studied 101 nodules cytologically classified as AUS/FLUS (n = 68) or FN/SFN (n = 33) from 97 thyroidectomy patients. Slides with cytological material were submitted for manual selection and analysis of the follicular cell nuclei for morphometric and texture parameters using ImageJ software. The histologically benign and malignant lesions were compared for such parameters which were then evaluated for the capacity to predict malignancy using the classification and regression trees gini model. The intraclass coefficient of correlation was used to evaluate method reproducibility. RESULTS: In AUS/FLUS nodule analysis, the benign and malignant nodules differed for entropy (P < 0.05), while the FN/SFN nodules differed for fractal analysis, coefficient of variation (CV) of roughness, and CV-entropy (P < 0.05). Considering the AUS/FLUS and FN/SFN nodules separately, it correctly classified 90.0 and 100.0% malignant nodules, with a correct global classification of 94.1 and 97%, respectively. We observed that reproducibility was substantially or nearly complete (0.61–0.93) in 10 of the 12 nuclear parameters evaluated. CONCLUSION: CANI demonstrated a high capacity for correctly classifying AUS/FLUS and FN/SFN thyroid nodules for malignancy. This could be a useful method to help increase diagnostic accuracy in the indeterminate thyroid cytology.
format Online
Article
Text
id pubmed-8284953
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Bioscientifica Ltd
record_format MEDLINE/PubMed
spelling pubmed-82849532021-07-20 Indeterminate thyroid cytology: detecting malignancy using analysis of nuclear images Hayashi, Caroline Y Jaune, Danilo T A Oliveira, Cristiano C Coelho, Bárbara P Miot, Hélio A Marques, Mariângela E A Tagliarini, José Vicente Castilho, Emanuel C Soares, Carlos S P Oliveira, Flávia R K Soares, Paula Mazeto, Gláucia M F S Endocr Connect Research BACKGROUND: Thyroid nodules diagnosed as 'atypia of undetermined significance/follicular lesion of undetermined significance' (AUS/FLUS) or 'follicular neoplasm/suspected follicular neoplasm' (FN/SFN), according to Bethesda’s classification, represent a challenge in clinical practice. Computerized analysis of nuclear images (CANI) could be a useful tool for these cases. Our aim was to evaluate the ability of CANI to correctly classify AUS/FLUS and FN/SFN thyroid nodules for malignancy. METHODS: We studied 101 nodules cytologically classified as AUS/FLUS (n = 68) or FN/SFN (n = 33) from 97 thyroidectomy patients. Slides with cytological material were submitted for manual selection and analysis of the follicular cell nuclei for morphometric and texture parameters using ImageJ software. The histologically benign and malignant lesions were compared for such parameters which were then evaluated for the capacity to predict malignancy using the classification and regression trees gini model. The intraclass coefficient of correlation was used to evaluate method reproducibility. RESULTS: In AUS/FLUS nodule analysis, the benign and malignant nodules differed for entropy (P < 0.05), while the FN/SFN nodules differed for fractal analysis, coefficient of variation (CV) of roughness, and CV-entropy (P < 0.05). Considering the AUS/FLUS and FN/SFN nodules separately, it correctly classified 90.0 and 100.0% malignant nodules, with a correct global classification of 94.1 and 97%, respectively. We observed that reproducibility was substantially or nearly complete (0.61–0.93) in 10 of the 12 nuclear parameters evaluated. CONCLUSION: CANI demonstrated a high capacity for correctly classifying AUS/FLUS and FN/SFN thyroid nodules for malignancy. This could be a useful method to help increase diagnostic accuracy in the indeterminate thyroid cytology. Bioscientifica Ltd 2021-06-02 /pmc/articles/PMC8284953/ /pubmed/34077391 http://dx.doi.org/10.1530/EC-20-0648 Text en © The authors https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. (https://creativecommons.org/licenses/by-nc/4.0/)
spellingShingle Research
Hayashi, Caroline Y
Jaune, Danilo T A
Oliveira, Cristiano C
Coelho, Bárbara P
Miot, Hélio A
Marques, Mariângela E A
Tagliarini, José Vicente
Castilho, Emanuel C
Soares, Carlos S P
Oliveira, Flávia R K
Soares, Paula
Mazeto, Gláucia M F S
Indeterminate thyroid cytology: detecting malignancy using analysis of nuclear images
title Indeterminate thyroid cytology: detecting malignancy using analysis of nuclear images
title_full Indeterminate thyroid cytology: detecting malignancy using analysis of nuclear images
title_fullStr Indeterminate thyroid cytology: detecting malignancy using analysis of nuclear images
title_full_unstemmed Indeterminate thyroid cytology: detecting malignancy using analysis of nuclear images
title_short Indeterminate thyroid cytology: detecting malignancy using analysis of nuclear images
title_sort indeterminate thyroid cytology: detecting malignancy using analysis of nuclear images
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8284953/
https://www.ncbi.nlm.nih.gov/pubmed/34077391
http://dx.doi.org/10.1530/EC-20-0648
work_keys_str_mv AT hayashicaroliney indeterminatethyroidcytologydetectingmalignancyusinganalysisofnuclearimages
AT jaunedanilota indeterminatethyroidcytologydetectingmalignancyusinganalysisofnuclearimages
AT oliveiracristianoc indeterminatethyroidcytologydetectingmalignancyusinganalysisofnuclearimages
AT coelhobarbarap indeterminatethyroidcytologydetectingmalignancyusinganalysisofnuclearimages
AT miothelioa indeterminatethyroidcytologydetectingmalignancyusinganalysisofnuclearimages
AT marquesmariangelaea indeterminatethyroidcytologydetectingmalignancyusinganalysisofnuclearimages
AT tagliarinijosevicente indeterminatethyroidcytologydetectingmalignancyusinganalysisofnuclearimages
AT castilhoemanuelc indeterminatethyroidcytologydetectingmalignancyusinganalysisofnuclearimages
AT soarescarlossp indeterminatethyroidcytologydetectingmalignancyusinganalysisofnuclearimages
AT oliveiraflaviark indeterminatethyroidcytologydetectingmalignancyusinganalysisofnuclearimages
AT soarespaula indeterminatethyroidcytologydetectingmalignancyusinganalysisofnuclearimages
AT mazetoglauciamfs indeterminatethyroidcytologydetectingmalignancyusinganalysisofnuclearimages