Cargando…

Immediate Effect of Restricted Knee Extension on Ground Reaction Force and Trunk Acceleration during Walking

Gait parameters calculated from trunk acceleration reflect the features of gait; however, they cannot evaluate the gait pattern corresponding to the gait cycle. This study is aimed at investigating the differences in gait parameters calculated from trunk acceleration during gait corresponding to the...

Descripción completa

Detalles Bibliográficos
Autores principales: Osaka, Hiroshi, Fujita, Daisuke, Kobara, Kenichi, Suehiro, Tadanobu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285203/
https://www.ncbi.nlm.nih.gov/pubmed/34306759
http://dx.doi.org/10.1155/2021/8833221
Descripción
Sumario:Gait parameters calculated from trunk acceleration reflect the features of gait; however, they cannot evaluate the gait pattern corresponding to the gait cycle. This study is aimed at investigating the differences in gait parameters calculated from trunk acceleration during gait corresponding to the gait cycle in healthy subjects with restricted knee extension. Participants included eight healthy volunteers who walked normally (NW) and with knee orthosis that restricted knee extension (ER). The ground reaction force (GRF), joint angles, and trunk acceleration during walking were measured using four force plates, a three-dimensional motion analysis system, and an inertial measurement unit. The peak GRF of the vertical components, joint ranges of motion, and moments of force were analyzed. The root mean square (RMS) and amplitude peak ratio (AR) of autocorrelation function were calculated from the trunk acceleration waveform. The first peak GRF and peak ankle dorsiflexion angles significantly increased during ER. The peak hip extension, knee flexion, knee extension angles, and the peak moment of knee extension significantly decreased during ER compared to that during NW. The acceleration AR significantly decreased during ER compared to that during NW. There was no significant difference in the RMS between the two conditions. The acceleration AR may show the temporal postural structure with restricted knee extension from the terminal stance phase for the ipsilateral limb to the initial stance phase for the contralateral limb. These results suggest that novel metrics for accelerometry gait analysis can reveal gait abnormalities, with restricted knee extension corresponding to the gait cycle.