Cargando…

Activation of the Peroxisome Proliferator-Activated Receptors (PPAR-α/γ) and the Fatty Acid Metabolizing Enzyme Protein CPT1A by Camel Milk Treatment Counteracts the High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease

Camel milk (CM) has a unique composition rich in antioxidants, trace elements, immunoglobulins, insulin, and insulin-like proteins. Treatment by CM demonstrated protective effects against nonalcoholic fatty liver disease (NAFLD) induced by a high-fat cholesterol-rich diet (HFD-C) in rats. CM dampene...

Descripción completa

Detalles Bibliográficos
Autores principales: AlNafea, Haifa M., Korish, Aida A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285205/
https://www.ncbi.nlm.nih.gov/pubmed/34306045
http://dx.doi.org/10.1155/2021/5558731
_version_ 1783723511315955712
author AlNafea, Haifa M.
Korish, Aida A.
author_facet AlNafea, Haifa M.
Korish, Aida A.
author_sort AlNafea, Haifa M.
collection PubMed
description Camel milk (CM) has a unique composition rich in antioxidants, trace elements, immunoglobulins, insulin, and insulin-like proteins. Treatment by CM demonstrated protective effects against nonalcoholic fatty liver disease (NAFLD) induced by a high-fat cholesterol-rich diet (HFD-C) in rats. CM dampened the steatosis, inflammation, and ballooning degeneration of the hepatocytes. It also counteracted hyperlipidemia, insulin resistance (IR), glucose intolerance, and oxidative stress. The commencement of NAFLD triggered the peroxisome proliferator-activated receptor-α (PPAR-α), carnitine palmitoyl-transferase-1 (CPT1A), and fatty acid-binding protein-1 (FABP1) and decreased the PPAR-γ expression in the tissues of the animals on HFD-C. This was associated with increased levels of the inflammatory cytokines IL-6 and TNF-α and leptin and declined levels of the anti-inflammatory adiponectin. Camel milk treatment to the NAFLD animals remarkably upregulated PPARs (α, γ) and the downstream enzyme CPT1A in the metabolically active tissues involved in cellular uptake and beta-oxidation of fatty acids. The enhanced lipid metabolism in the CM-treated animals was linked with decreased expression of FABP1 and suppression of IL-6, TNF-α, and leptin release with augmented adiponectin production. The protective effects of CM against the histological and biochemical features of NAFLD are at least in part related to the activation of the hepatic and extrahepatic PPARs (α, γ) with consequent activation of the downstream enzymes involved in fat metabolism. Camel milk treatment carries a promising therapeutic potential to NAFLD through stimulating PPARs actions on fat metabolism and glucose homeostasis. This can protect against hepatic steatosis, IR, and diabetes mellitus in high-risk obese patients.
format Online
Article
Text
id pubmed-8285205
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-82852052021-07-22 Activation of the Peroxisome Proliferator-Activated Receptors (PPAR-α/γ) and the Fatty Acid Metabolizing Enzyme Protein CPT1A by Camel Milk Treatment Counteracts the High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease AlNafea, Haifa M. Korish, Aida A. PPAR Res Research Article Camel milk (CM) has a unique composition rich in antioxidants, trace elements, immunoglobulins, insulin, and insulin-like proteins. Treatment by CM demonstrated protective effects against nonalcoholic fatty liver disease (NAFLD) induced by a high-fat cholesterol-rich diet (HFD-C) in rats. CM dampened the steatosis, inflammation, and ballooning degeneration of the hepatocytes. It also counteracted hyperlipidemia, insulin resistance (IR), glucose intolerance, and oxidative stress. The commencement of NAFLD triggered the peroxisome proliferator-activated receptor-α (PPAR-α), carnitine palmitoyl-transferase-1 (CPT1A), and fatty acid-binding protein-1 (FABP1) and decreased the PPAR-γ expression in the tissues of the animals on HFD-C. This was associated with increased levels of the inflammatory cytokines IL-6 and TNF-α and leptin and declined levels of the anti-inflammatory adiponectin. Camel milk treatment to the NAFLD animals remarkably upregulated PPARs (α, γ) and the downstream enzyme CPT1A in the metabolically active tissues involved in cellular uptake and beta-oxidation of fatty acids. The enhanced lipid metabolism in the CM-treated animals was linked with decreased expression of FABP1 and suppression of IL-6, TNF-α, and leptin release with augmented adiponectin production. The protective effects of CM against the histological and biochemical features of NAFLD are at least in part related to the activation of the hepatic and extrahepatic PPARs (α, γ) with consequent activation of the downstream enzymes involved in fat metabolism. Camel milk treatment carries a promising therapeutic potential to NAFLD through stimulating PPARs actions on fat metabolism and glucose homeostasis. This can protect against hepatic steatosis, IR, and diabetes mellitus in high-risk obese patients. Hindawi 2021-07-09 /pmc/articles/PMC8285205/ /pubmed/34306045 http://dx.doi.org/10.1155/2021/5558731 Text en Copyright © 2021 Haifa M. AlNafea and Aida A. Korish. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
AlNafea, Haifa M.
Korish, Aida A.
Activation of the Peroxisome Proliferator-Activated Receptors (PPAR-α/γ) and the Fatty Acid Metabolizing Enzyme Protein CPT1A by Camel Milk Treatment Counteracts the High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease
title Activation of the Peroxisome Proliferator-Activated Receptors (PPAR-α/γ) and the Fatty Acid Metabolizing Enzyme Protein CPT1A by Camel Milk Treatment Counteracts the High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease
title_full Activation of the Peroxisome Proliferator-Activated Receptors (PPAR-α/γ) and the Fatty Acid Metabolizing Enzyme Protein CPT1A by Camel Milk Treatment Counteracts the High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease
title_fullStr Activation of the Peroxisome Proliferator-Activated Receptors (PPAR-α/γ) and the Fatty Acid Metabolizing Enzyme Protein CPT1A by Camel Milk Treatment Counteracts the High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease
title_full_unstemmed Activation of the Peroxisome Proliferator-Activated Receptors (PPAR-α/γ) and the Fatty Acid Metabolizing Enzyme Protein CPT1A by Camel Milk Treatment Counteracts the High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease
title_short Activation of the Peroxisome Proliferator-Activated Receptors (PPAR-α/γ) and the Fatty Acid Metabolizing Enzyme Protein CPT1A by Camel Milk Treatment Counteracts the High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease
title_sort activation of the peroxisome proliferator-activated receptors (ppar-α/γ) and the fatty acid metabolizing enzyme protein cpt1a by camel milk treatment counteracts the high-fat diet-induced nonalcoholic fatty liver disease
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285205/
https://www.ncbi.nlm.nih.gov/pubmed/34306045
http://dx.doi.org/10.1155/2021/5558731
work_keys_str_mv AT alnafeahaifam activationoftheperoxisomeproliferatoractivatedreceptorspparagandthefattyacidmetabolizingenzymeproteincpt1abycamelmilktreatmentcounteractsthehighfatdietinducednonalcoholicfattyliverdisease
AT korishaidaa activationoftheperoxisomeproliferatoractivatedreceptorspparagandthefattyacidmetabolizingenzymeproteincpt1abycamelmilktreatmentcounteractsthehighfatdietinducednonalcoholicfattyliverdisease