Cargando…
Machine learning designs non-hemolytic antimicrobial peptides
Machine learning (ML) consists of the recognition of patterns from training data and offers the opportunity to exploit large structure–activity databases for drug design. In the area of peptide drugs, ML is mostly being tested to design antimicrobial peptides (AMPs), a class of biomolecules potentia...
Autores principales: | Capecchi, Alice, Cai, Xingguang, Personne, Hippolyte, Köhler, Thilo, van Delden, Christian, Reymond, Jean-Louis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285431/ https://www.ncbi.nlm.nih.gov/pubmed/34349895 http://dx.doi.org/10.1039/d1sc01713f |
Ejemplares similares
-
A mixed chirality α-helix in a stapled bicyclic and a linear antimicrobial peptide revealed by X-ray crystallography
por: Baeriswyl, Stéphane, et al.
Publicado: (2021) -
An intrinsically disordered antimicrobial peptide dendrimer from stereorandomized virtual screening
por: Cai, Xingguang, et al.
Publicado: (2022) -
To Fold or
Not to Fold: Diastereomeric Optimization
of an α-Helical Antimicrobial Peptide
por: Personne, Hippolyte, et al.
Publicado: (2023) -
Machine Learning Guided Discovery of Non‐Hemolytic Membrane Disruptive Anticancer Peptides
por: Zakharova, Elena, et al.
Publicado: (2022) -
The antibacterial activity of peptide dendrimers and polymyxin B increases sharply above pH 7.4
por: Cai, Xingguang, et al.
Publicado: (2021)