Cargando…
The unique role of parietal cortex in action observation: Functional organization for communicative and manipulative actions
Action observation is supported by a network of regions in occipito-temporal, parietal, and premotor cortex in primates. Recent research suggests that the parietal node has regions dedicated to different action classes including manipulation, interpersonal interactions, skin displacement, locomotion...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285591/ https://www.ncbi.nlm.nih.gov/pubmed/34058335 http://dx.doi.org/10.1016/j.neuroimage.2021.118220 |
_version_ | 1783723588235296768 |
---|---|
author | Urgen, Burcu A. Orban, Guy A. |
author_facet | Urgen, Burcu A. Orban, Guy A. |
author_sort | Urgen, Burcu A. |
collection | PubMed |
description | Action observation is supported by a network of regions in occipito-temporal, parietal, and premotor cortex in primates. Recent research suggests that the parietal node has regions dedicated to different action classes including manipulation, interpersonal interactions, skin displacement, locomotion, and climbing. The goals of the current study consist of: 1) extending this work with new classes of actions that are communicative and specific to humans, 2) investigating how parietal cortex differs from the occipito-temporal and premotor cortex in representing action classes. Human subjects underwent fMRI scanning while observing three action classes: indirect communication, direct communication, and manipulation, plus two types of control stimuli, static controls which were static frames from the video clips, and dynamic controls consisting of temporally-scrambled optic flow information. Using univariate analysis, MVPA, and representational similarity analysis, our study presents several novel findings. First, we provide further evidence for the anatomical segregation in parietal cortex of different action classes: We have found a new site that is specific for representing human-specific indirect communicative actions in cytoarchitectonic parietal area PFt. Second, we found that the discriminability between action classes was higher in parietal cortex than the other two levels suggesting the coding of action identity information at this level. Finally, our results advocate the use of the control stimuli not just for univariate analysis of complex action videos but also when using multivariate techniques. |
format | Online Article Text |
id | pubmed-8285591 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Academic Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-82855912021-08-15 The unique role of parietal cortex in action observation: Functional organization for communicative and manipulative actions Urgen, Burcu A. Orban, Guy A. Neuroimage Article Action observation is supported by a network of regions in occipito-temporal, parietal, and premotor cortex in primates. Recent research suggests that the parietal node has regions dedicated to different action classes including manipulation, interpersonal interactions, skin displacement, locomotion, and climbing. The goals of the current study consist of: 1) extending this work with new classes of actions that are communicative and specific to humans, 2) investigating how parietal cortex differs from the occipito-temporal and premotor cortex in representing action classes. Human subjects underwent fMRI scanning while observing three action classes: indirect communication, direct communication, and manipulation, plus two types of control stimuli, static controls which were static frames from the video clips, and dynamic controls consisting of temporally-scrambled optic flow information. Using univariate analysis, MVPA, and representational similarity analysis, our study presents several novel findings. First, we provide further evidence for the anatomical segregation in parietal cortex of different action classes: We have found a new site that is specific for representing human-specific indirect communicative actions in cytoarchitectonic parietal area PFt. Second, we found that the discriminability between action classes was higher in parietal cortex than the other two levels suggesting the coding of action identity information at this level. Finally, our results advocate the use of the control stimuli not just for univariate analysis of complex action videos but also when using multivariate techniques. Academic Press 2021-08-15 /pmc/articles/PMC8285591/ /pubmed/34058335 http://dx.doi.org/10.1016/j.neuroimage.2021.118220 Text en © 2021 The Authors. Published by Elsevier Inc. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Urgen, Burcu A. Orban, Guy A. The unique role of parietal cortex in action observation: Functional organization for communicative and manipulative actions |
title | The unique role of parietal cortex in action observation: Functional organization for communicative and manipulative actions |
title_full | The unique role of parietal cortex in action observation: Functional organization for communicative and manipulative actions |
title_fullStr | The unique role of parietal cortex in action observation: Functional organization for communicative and manipulative actions |
title_full_unstemmed | The unique role of parietal cortex in action observation: Functional organization for communicative and manipulative actions |
title_short | The unique role of parietal cortex in action observation: Functional organization for communicative and manipulative actions |
title_sort | unique role of parietal cortex in action observation: functional organization for communicative and manipulative actions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285591/ https://www.ncbi.nlm.nih.gov/pubmed/34058335 http://dx.doi.org/10.1016/j.neuroimage.2021.118220 |
work_keys_str_mv | AT urgenburcua theuniqueroleofparietalcortexinactionobservationfunctionalorganizationforcommunicativeandmanipulativeactions AT orbanguya theuniqueroleofparietalcortexinactionobservationfunctionalorganizationforcommunicativeandmanipulativeactions AT urgenburcua uniqueroleofparietalcortexinactionobservationfunctionalorganizationforcommunicativeandmanipulativeactions AT orbanguya uniqueroleofparietalcortexinactionobservationfunctionalorganizationforcommunicativeandmanipulativeactions |