Cargando…

SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI

The Soma and Neurite Density Imaging (SANDI) three-compartment model was recently proposed to disentangle cylindrical and spherical geometries, attributed to neurite and soma compartments, respectively, in brain tissue. There are some recent advances in diffusion-weighted MRI signal encoding and ana...

Descripción completa

Detalles Bibliográficos
Autores principales: Afzali, Maryam, Nilsson, Markus, Palombo, Marco, Jones, Derek K
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285594/
https://www.ncbi.nlm.nih.gov/pubmed/34020013
http://dx.doi.org/10.1016/j.neuroimage.2021.118183
_version_ 1783723588923162624
author Afzali, Maryam
Nilsson, Markus
Palombo, Marco
Jones, Derek K
author_facet Afzali, Maryam
Nilsson, Markus
Palombo, Marco
Jones, Derek K
author_sort Afzali, Maryam
collection PubMed
description The Soma and Neurite Density Imaging (SANDI) three-compartment model was recently proposed to disentangle cylindrical and spherical geometries, attributed to neurite and soma compartments, respectively, in brain tissue. There are some recent advances in diffusion-weighted MRI signal encoding and analysis (including the use of multiple so-called ’b-tensor’ encodings and analysing the signal in the frequency-domain) that have not yet been applied in the context of SANDI. In this work, using: (i) ultra-strong gradients; (ii) a combination of linear, planar, and spherical b-tensor encodings; and (iii) analysing the signal in the frequency domain, three main challenges to robust estimation of sphere size were identified: First, the Rician noise floor in magnitude-reconstructed data biases estimates of sphere properties in a non-uniform fashion. It may cause overestimation or underestimation of the spherical compartment size and density. This can be partly ameliorated by accounting for the noise floor in the estimation routine. Second, even when using the strongest diffusion-encoding gradient strengths available for human MRI, there is an empirical lower bound on the spherical signal fraction and radius that can be detected and estimated robustly. For the experimental setup used here, the lower bound on the sphere signal fraction was approximately 10%. We employed two different ways of establishing the lower bound for spherical radius estimates in white matter. The first, examining power-law relationships between the DW-signal and diffusion weighting in empirical data, yielded a lower bound of [Formula: see text] , while the second, pure Monte Carlo simulations, yielded a lower limit of [Formula: see text] and in this low radii domain, there is little differentiation in signal attenuation. Third, if there is sensitivity to the transverse intra-cellular diffusivity in cylindrical structures, e.g., axons and cellular projections, then trying to disentangle two diffusion-time-dependencies using one experimental parameter (i.e., change in frequency-content of the encoding waveform) makes spherical radii estimates particularly challenging. We conclude that due to the aforementioned challenges spherical radii estimates may be biased when the corresponding sphere signal fraction is low, which must be considered.
format Online
Article
Text
id pubmed-8285594
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Academic Press
record_format MEDLINE/PubMed
spelling pubmed-82855942021-08-15 SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI Afzali, Maryam Nilsson, Markus Palombo, Marco Jones, Derek K Neuroimage Article The Soma and Neurite Density Imaging (SANDI) three-compartment model was recently proposed to disentangle cylindrical and spherical geometries, attributed to neurite and soma compartments, respectively, in brain tissue. There are some recent advances in diffusion-weighted MRI signal encoding and analysis (including the use of multiple so-called ’b-tensor’ encodings and analysing the signal in the frequency-domain) that have not yet been applied in the context of SANDI. In this work, using: (i) ultra-strong gradients; (ii) a combination of linear, planar, and spherical b-tensor encodings; and (iii) analysing the signal in the frequency domain, three main challenges to robust estimation of sphere size were identified: First, the Rician noise floor in magnitude-reconstructed data biases estimates of sphere properties in a non-uniform fashion. It may cause overestimation or underestimation of the spherical compartment size and density. This can be partly ameliorated by accounting for the noise floor in the estimation routine. Second, even when using the strongest diffusion-encoding gradient strengths available for human MRI, there is an empirical lower bound on the spherical signal fraction and radius that can be detected and estimated robustly. For the experimental setup used here, the lower bound on the sphere signal fraction was approximately 10%. We employed two different ways of establishing the lower bound for spherical radius estimates in white matter. The first, examining power-law relationships between the DW-signal and diffusion weighting in empirical data, yielded a lower bound of [Formula: see text] , while the second, pure Monte Carlo simulations, yielded a lower limit of [Formula: see text] and in this low radii domain, there is little differentiation in signal attenuation. Third, if there is sensitivity to the transverse intra-cellular diffusivity in cylindrical structures, e.g., axons and cellular projections, then trying to disentangle two diffusion-time-dependencies using one experimental parameter (i.e., change in frequency-content of the encoding waveform) makes spherical radii estimates particularly challenging. We conclude that due to the aforementioned challenges spherical radii estimates may be biased when the corresponding sphere signal fraction is low, which must be considered. Academic Press 2021-08-15 /pmc/articles/PMC8285594/ /pubmed/34020013 http://dx.doi.org/10.1016/j.neuroimage.2021.118183 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Afzali, Maryam
Nilsson, Markus
Palombo, Marco
Jones, Derek K
SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI
title SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI
title_full SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI
title_fullStr SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI
title_full_unstemmed SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI
title_short SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI
title_sort spheriously? the challenges of estimating sphere radius non-invasively in the human brain from diffusion mri
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285594/
https://www.ncbi.nlm.nih.gov/pubmed/34020013
http://dx.doi.org/10.1016/j.neuroimage.2021.118183
work_keys_str_mv AT afzalimaryam spheriouslythechallengesofestimatingsphereradiusnoninvasivelyinthehumanbrainfromdiffusionmri
AT nilssonmarkus spheriouslythechallengesofestimatingsphereradiusnoninvasivelyinthehumanbrainfromdiffusionmri
AT palombomarco spheriouslythechallengesofestimatingsphereradiusnoninvasivelyinthehumanbrainfromdiffusionmri
AT jonesderekk spheriouslythechallengesofestimatingsphereradiusnoninvasivelyinthehumanbrainfromdiffusionmri