Cargando…
Integrating Patient Data Into Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review
BACKGROUND: Recent years have been witnessing a substantial improvement in the accuracy of skin cancer classification using convolutional neural networks (CNNs). CNNs perform on par with or better than dermatologists with respect to the classification tasks of single images. However, in clinical pra...
Autores principales: | Höhn, Julia, Hekler, Achim, Krieghoff-Henning, Eva, Kather, Jakob Nikolas, Utikal, Jochen Sven, Meier, Friedegund, Gellrich, Frank Friedrich, Hauschild, Axel, French, Lars, Schlager, Justin Gabriel, Ghoreschi, Kamran, Wilhelm, Tabea, Kutzner, Heinz, Heppt, Markus, Haferkamp, Sebastian, Sondermann, Wiebke, Schadendorf, Dirk, Schilling, Bastian, Maron, Roman C, Schmitt, Max, Jutzi, Tanja, Fröhling, Stefan, Lipka, Daniel B, Brinker, Titus Josef |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285747/ https://www.ncbi.nlm.nih.gov/pubmed/34255646 http://dx.doi.org/10.2196/20708 |
Ejemplares similares
-
Effects of Label Noise on Deep Learning-Based Skin Cancer Classification
por: Hekler, Achim, et al.
Publicado: (2020) -
Artificial Intelligence in Skin Cancer Diagnostics: The Patients' Perspective
por: Jutzi, Tanja B., et al.
Publicado: (2020) -
Artificial Intelligence and Its Effect on Dermatologists’ Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study
por: Maron, Roman C, et al.
Publicado: (2020) -
Hidden Variables in Deep Learning Digital Pathology and Their Potential to Cause Batch Effects: Prediction Model Study
por: Schmitt, Max, et al.
Publicado: (2021) -
Reducing the Impact of Confounding Factors on Skin Cancer Classification via Image Segmentation: Technical Model Study
por: Maron, Roman C, et al.
Publicado: (2021)