Cargando…
Deep Graph Mapper: Seeing Graphs Through the Neural Lens
Graph summarization has received much attention lately, with various works tackling the challenge of defining pooling operators on data regions with arbitrary structures. These contrast the grid-like ones encountered in image inputs, where techniques such as max-pooling have been enough to show empi...
Autores principales: | Bodnar, Cristian, Cangea, Cătălina, Liò, Pietro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285761/ https://www.ncbi.nlm.nih.gov/pubmed/34282408 http://dx.doi.org/10.3389/fdata.2021.680535 |
Ejemplares similares
-
MARGIN: Uncovering Deep Neural Networks Using Graph Signal Analysis
por: Anirudh, Rushil, et al.
Publicado: (2021) -
Deep Graph Learning for Circuit Deobfuscation
por: Chen, Zhiqian, et al.
Publicado: (2021) -
You Can't See Me: Anonymizing Graphs Using the Szemerédi Regularity Lemma
por: Foffano, Daniele, et al.
Publicado: (2019) -
Auto-GNN: Neural architecture search of graph neural networks
por: Zhou, Kaixiong, et al.
Publicado: (2022) -
Fast and adaptive dynamics-on-graphs to dynamics-of-graphs translation
por: Zhang, Lei, et al.
Publicado: (2023)