Cargando…
Accurate plant pathogen effector protein classification ab initio with deepredeff: an ensemble of convolutional neural networks
BACKGROUND: Plant pathogens cause billions of dollars of crop loss every year and are a major threat to global food security. Effector proteins are the tools such pathogens use to infect the cell, predicting effectors de novo from sequence is difficult because of the heterogeneity of the sequences....
Autores principales: | Kristianingsih, Ruth, MacLean, Dan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285798/ https://www.ncbi.nlm.nih.gov/pubmed/34273967 http://dx.doi.org/10.1186/s12859-021-04293-3 |
Ejemplares similares
-
SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models
por: Reid, Ian, et al.
Publicado: (2014) -
PreDisorder: ab initio sequence-based prediction of protein disordered regions
por: Deng, Xin, et al.
Publicado: (2009) -
CONFOLD2: improved contact-driven ab initio protein structure modeling
por: Adhikari, Badri, et al.
Publicado: (2018) -
SeqScreen: accurate and sensitive functional screening of pathogenic sequences via ensemble learning
por: Balaji, Advait, et al.
Publicado: (2022) -
IPred - integrating ab initio and evidence based gene predictions to improve prediction accuracy
por: Zickmann, Franziska, et al.
Publicado: (2015)