Cargando…

Molecular phylogenetic assessment of Spirobranchus kraussii-complex (Annelida: Serpulidae) from the Japanese Archipelago

Spirobranchus kraussii (Annelida: Serpulidae) was recognized as being widely distributed both in the Pacific and Atlantic Oceans. However, the sampling records far from its type locality (South Africa) have been questioned. Actually, recent molecular phylogenetic studies showed that S. kraussii cont...

Descripción completa

Detalles Bibliográficos
Autores principales: Kobayashi, Genki, Goto, Ryutaro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8286061/
https://www.ncbi.nlm.nih.gov/pubmed/34316401
http://dx.doi.org/10.7717/peerj.11746
Descripción
Sumario:Spirobranchus kraussii (Annelida: Serpulidae) was recognized as being widely distributed both in the Pacific and Atlantic Oceans. However, the sampling records far from its type locality (South Africa) have been questioned. Actually, recent molecular phylogenetic studies showed that S. kraussii contains genetically distinct species. In this study, we performed molecular phylogenetic analyses of S. cf. kraussii collected from Japan using the nucleotide sequences of a mitochondrial gene and two nuclear genes. Three lineages were recovered within Spirobranchus kraussii-complex in Japan, and one (Spirobranchus sp. 6) showed moderate genetic difference (approximately 4%) in the mitochondrial cytb gene sequence from Spirobranchus sp. 1, an undescribed sequenced species from Honshu Island, Japan. However, the nucleotide sequences of the 18S rRNA gene and ITS2 region were nearly indistinguishable. The other lineage was clearly distinct from the other previously sequenced species and is thus considered to be another distinct species of this species complex (Spirobranchus sp. 5). Although detailed morphological assessment of these lineages is necessary to define their taxonomic status, the present study provided further implications for the species diversity within the S. kraussii-complex.