Cargando…
Smaller Copper Oxide Nanoparticles have More Biological Effects Versus Breast Cancer and Nosocomial Infections Bacteria
BACKGROUND AND OBJECTIVES: Despite promising successes in developing new drugs and pharmaceutical biotechnology, infectious diseases and cancer are still the principal causes of mortality and morbidity globally. Therefore, finding effective ways to deal with these pathogens and cancers is critical....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
West Asia Organization for Cancer Prevention
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8286693/ https://www.ncbi.nlm.nih.gov/pubmed/33773555 http://dx.doi.org/10.31557/APJCP.2021.22.3.893 |
_version_ | 1783723765796962304 |
---|---|
author | Abbasi, Ardeshir Ghorban, Khodayar Nojoomi, Farshad Dadmanesh, Maryam |
author_facet | Abbasi, Ardeshir Ghorban, Khodayar Nojoomi, Farshad Dadmanesh, Maryam |
author_sort | Abbasi, Ardeshir |
collection | PubMed |
description | BACKGROUND AND OBJECTIVES: Despite promising successes in developing new drugs and pharmaceutical biotechnology, infectious diseases and cancer are still the principal causes of mortality and morbidity globally. Therefore, finding effective ways to deal with these pathogens and cancers is critical. Metal nanoparticles are one of the new strategies to combat bacteria and cancers. METHODS: We examined the antimicrobial activity of 30 and 60 nm copper oxide nanoparticles (CuO-NPs) against Acinetobacter baumannii and Staphylococcus epidermidis bacteria responsible for nosocomial infections in standard and clinical strains and anti-cancer activity against 4T1 cell line as malignancy breast cancer cells. Synthesis of CuO-NPs was performed by a one-step reduction method and confirmed by DLS and TEM microscopy at 30 and 60 nm sizes. The antibacterial and anti-cancer activities of the nanoparticles were then investigated against the aforementioned bacteria and breast cancer. RESULTS: Using disk, well, MIC, MBC methods, and viability/bacterial growth assay, 30 nm CuO NPs were found to have more antibacterial activity on standard and clinical strains than 60 nm CuO NPs. On the other hand, using MTT, apoptosis, and gene expression method, 30 nm nanoparticles were found to have more anti-cancer potential than 60 nm CuO NPs. CONCLUSIONS: Our findings implicate CuO-NPs to possess antimicrobial and anti-cancer effects and more significant potential in smaller sizes, suggesting their pharmaceutical and biomedical capacity. |
format | Online Article Text |
id | pubmed-8286693 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | West Asia Organization for Cancer Prevention |
record_format | MEDLINE/PubMed |
spelling | pubmed-82866932021-07-23 Smaller Copper Oxide Nanoparticles have More Biological Effects Versus Breast Cancer and Nosocomial Infections Bacteria Abbasi, Ardeshir Ghorban, Khodayar Nojoomi, Farshad Dadmanesh, Maryam Asian Pac J Cancer Prev Research Article BACKGROUND AND OBJECTIVES: Despite promising successes in developing new drugs and pharmaceutical biotechnology, infectious diseases and cancer are still the principal causes of mortality and morbidity globally. Therefore, finding effective ways to deal with these pathogens and cancers is critical. Metal nanoparticles are one of the new strategies to combat bacteria and cancers. METHODS: We examined the antimicrobial activity of 30 and 60 nm copper oxide nanoparticles (CuO-NPs) against Acinetobacter baumannii and Staphylococcus epidermidis bacteria responsible for nosocomial infections in standard and clinical strains and anti-cancer activity against 4T1 cell line as malignancy breast cancer cells. Synthesis of CuO-NPs was performed by a one-step reduction method and confirmed by DLS and TEM microscopy at 30 and 60 nm sizes. The antibacterial and anti-cancer activities of the nanoparticles were then investigated against the aforementioned bacteria and breast cancer. RESULTS: Using disk, well, MIC, MBC methods, and viability/bacterial growth assay, 30 nm CuO NPs were found to have more antibacterial activity on standard and clinical strains than 60 nm CuO NPs. On the other hand, using MTT, apoptosis, and gene expression method, 30 nm nanoparticles were found to have more anti-cancer potential than 60 nm CuO NPs. CONCLUSIONS: Our findings implicate CuO-NPs to possess antimicrobial and anti-cancer effects and more significant potential in smaller sizes, suggesting their pharmaceutical and biomedical capacity. West Asia Organization for Cancer Prevention 2021-03 /pmc/articles/PMC8286693/ /pubmed/33773555 http://dx.doi.org/10.31557/APJCP.2021.22.3.893 Text en https://creativecommons.org/licenses/by/3.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/ (https://creativecommons.org/licenses/by/3.0/) ) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Abbasi, Ardeshir Ghorban, Khodayar Nojoomi, Farshad Dadmanesh, Maryam Smaller Copper Oxide Nanoparticles have More Biological Effects Versus Breast Cancer and Nosocomial Infections Bacteria |
title | Smaller Copper Oxide Nanoparticles have More Biological Effects Versus Breast Cancer and Nosocomial Infections Bacteria |
title_full | Smaller Copper Oxide Nanoparticles have More Biological Effects Versus Breast Cancer and Nosocomial Infections Bacteria |
title_fullStr | Smaller Copper Oxide Nanoparticles have More Biological Effects Versus Breast Cancer and Nosocomial Infections Bacteria |
title_full_unstemmed | Smaller Copper Oxide Nanoparticles have More Biological Effects Versus Breast Cancer and Nosocomial Infections Bacteria |
title_short | Smaller Copper Oxide Nanoparticles have More Biological Effects Versus Breast Cancer and Nosocomial Infections Bacteria |
title_sort | smaller copper oxide nanoparticles have more biological effects versus breast cancer and nosocomial infections bacteria |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8286693/ https://www.ncbi.nlm.nih.gov/pubmed/33773555 http://dx.doi.org/10.31557/APJCP.2021.22.3.893 |
work_keys_str_mv | AT abbasiardeshir smallercopperoxidenanoparticleshavemorebiologicaleffectsversusbreastcancerandnosocomialinfectionsbacteria AT ghorbankhodayar smallercopperoxidenanoparticleshavemorebiologicaleffectsversusbreastcancerandnosocomialinfectionsbacteria AT nojoomifarshad smallercopperoxidenanoparticleshavemorebiologicaleffectsversusbreastcancerandnosocomialinfectionsbacteria AT dadmaneshmaryam smallercopperoxidenanoparticleshavemorebiologicaleffectsversusbreastcancerandnosocomialinfectionsbacteria |