Cargando…

Interferon-induced GTPases orchestrate host cell-autonomous defence against bacterial pathogens

Interferon (IFN)-induced guanosine triphosphate hydrolysing enzymes (GTPases) have been identified as cornerstones of IFN-mediated cell-autonomous defence. Upon IFN stimulation, these GTPases are highly expressed in various host cells, where they orchestrate anti-microbial activities against a diver...

Descripción completa

Detalles Bibliográficos
Autores principales: Rafeld, Heike L., Kolanus, Waldemar, van Driel, Ian R., Hartland, Elizabeth L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8286824/
https://www.ncbi.nlm.nih.gov/pubmed/34003245
http://dx.doi.org/10.1042/BST20200900
Descripción
Sumario:Interferon (IFN)-induced guanosine triphosphate hydrolysing enzymes (GTPases) have been identified as cornerstones of IFN-mediated cell-autonomous defence. Upon IFN stimulation, these GTPases are highly expressed in various host cells, where they orchestrate anti-microbial activities against a diverse range of pathogens such as bacteria, protozoan and viruses. IFN-induced GTPases have been shown to interact with various host pathways and proteins mediating pathogen control via inflammasome activation, destabilising pathogen compartments and membranes, orchestrating destruction via autophagy and the production of reactive oxygen species as well as inhibiting pathogen mobility. In this mini-review, we provide an update on how the IFN-induced GTPases target pathogens and mediate host defence, emphasising findings on protection against bacterial pathogens.