Cargando…
Rapid, label-free, and sensitive point-of-care testing of anti-SARS-CoV-2 IgM/IgG using all-fiber Fresnel reflection microfluidic biosensor
The ongoing global pandemic of SARS-CoV-2 has promoted to develop novel serological testing technologies since they can be effectively complementary to RT-PCR. Here, a new all-fiber Fresnel reflection microfluidic biosensor (FRMB) was constructed through combining all-fiber optical system, microflui...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8286882/ https://www.ncbi.nlm.nih.gov/pubmed/34278534 http://dx.doi.org/10.1007/s00604-021-04911-0 |
_version_ | 1783723805761339392 |
---|---|
author | Xu, Wenjuan Liu, Jiayao Song, Dan Li, Chunsheng Zhu, Anna Long, Feng |
author_facet | Xu, Wenjuan Liu, Jiayao Song, Dan Li, Chunsheng Zhu, Anna Long, Feng |
author_sort | Xu, Wenjuan |
collection | PubMed |
description | The ongoing global pandemic of SARS-CoV-2 has promoted to develop novel serological testing technologies since they can be effectively complementary to RT-PCR. Here, a new all-fiber Fresnel reflection microfluidic biosensor (FRMB) was constructed through combining all-fiber optical system, microfluidic chip, and multimode fiber bio-probe. The transmission of the incident light and the collection and transmission of Fresnel reflection light are achieved using a single-multi-mode fiber optic coupler (SMFC) without any other optical separation elements. This compact design greatly simplifies the whole system structure and improves light transmission efficiency, which makes it suitable for the label-free, sensitive, and easy-to-use point-of-care testing (POCT) of targets in nanoliter samples. Based on Fresnel reflection mechanism and immunoassay principle, both the SARS-CoV-2 IgM and IgG antibodies against the SARS-CoV-2 spike protein could be sensitively quantified in 7 min using the secondary antibodies-modified multimode fiber bio-probe. The FRMB performs in one-step, is accurate, label-free, and sensitive in situ/on-site detection of SARS-CoV-2 IgM or IgG in serum with simple dilution only. The limits of detection of SARS-CoV-2 IgM and SARS-CoV-2 IgG were 0.82 ng/mL and 0.45 ng/mL, respectively. Based on our proposed theory, the affinity constants of SARS-CoV-2 IgM or IgG antibody and their respective secondary antibodies were also determined. The FRMB can be readily extended as a universal platform for the label-free, rapid, and sensitive in situ/on-site measurement of other biomarkers and the investigation of biomolecular interaction. [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00604-021-04911-0. |
format | Online Article Text |
id | pubmed-8286882 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Vienna |
record_format | MEDLINE/PubMed |
spelling | pubmed-82868822021-07-19 Rapid, label-free, and sensitive point-of-care testing of anti-SARS-CoV-2 IgM/IgG using all-fiber Fresnel reflection microfluidic biosensor Xu, Wenjuan Liu, Jiayao Song, Dan Li, Chunsheng Zhu, Anna Long, Feng Mikrochim Acta Original Paper The ongoing global pandemic of SARS-CoV-2 has promoted to develop novel serological testing technologies since they can be effectively complementary to RT-PCR. Here, a new all-fiber Fresnel reflection microfluidic biosensor (FRMB) was constructed through combining all-fiber optical system, microfluidic chip, and multimode fiber bio-probe. The transmission of the incident light and the collection and transmission of Fresnel reflection light are achieved using a single-multi-mode fiber optic coupler (SMFC) without any other optical separation elements. This compact design greatly simplifies the whole system structure and improves light transmission efficiency, which makes it suitable for the label-free, sensitive, and easy-to-use point-of-care testing (POCT) of targets in nanoliter samples. Based on Fresnel reflection mechanism and immunoassay principle, both the SARS-CoV-2 IgM and IgG antibodies against the SARS-CoV-2 spike protein could be sensitively quantified in 7 min using the secondary antibodies-modified multimode fiber bio-probe. The FRMB performs in one-step, is accurate, label-free, and sensitive in situ/on-site detection of SARS-CoV-2 IgM or IgG in serum with simple dilution only. The limits of detection of SARS-CoV-2 IgM and SARS-CoV-2 IgG were 0.82 ng/mL and 0.45 ng/mL, respectively. Based on our proposed theory, the affinity constants of SARS-CoV-2 IgM or IgG antibody and their respective secondary antibodies were also determined. The FRMB can be readily extended as a universal platform for the label-free, rapid, and sensitive in situ/on-site measurement of other biomarkers and the investigation of biomolecular interaction. [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00604-021-04911-0. Springer Vienna 2021-07-19 2021 /pmc/articles/PMC8286882/ /pubmed/34278534 http://dx.doi.org/10.1007/s00604-021-04911-0 Text en © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Original Paper Xu, Wenjuan Liu, Jiayao Song, Dan Li, Chunsheng Zhu, Anna Long, Feng Rapid, label-free, and sensitive point-of-care testing of anti-SARS-CoV-2 IgM/IgG using all-fiber Fresnel reflection microfluidic biosensor |
title | Rapid, label-free, and sensitive point-of-care testing of anti-SARS-CoV-2 IgM/IgG using all-fiber Fresnel reflection microfluidic biosensor |
title_full | Rapid, label-free, and sensitive point-of-care testing of anti-SARS-CoV-2 IgM/IgG using all-fiber Fresnel reflection microfluidic biosensor |
title_fullStr | Rapid, label-free, and sensitive point-of-care testing of anti-SARS-CoV-2 IgM/IgG using all-fiber Fresnel reflection microfluidic biosensor |
title_full_unstemmed | Rapid, label-free, and sensitive point-of-care testing of anti-SARS-CoV-2 IgM/IgG using all-fiber Fresnel reflection microfluidic biosensor |
title_short | Rapid, label-free, and sensitive point-of-care testing of anti-SARS-CoV-2 IgM/IgG using all-fiber Fresnel reflection microfluidic biosensor |
title_sort | rapid, label-free, and sensitive point-of-care testing of anti-sars-cov-2 igm/igg using all-fiber fresnel reflection microfluidic biosensor |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8286882/ https://www.ncbi.nlm.nih.gov/pubmed/34278534 http://dx.doi.org/10.1007/s00604-021-04911-0 |
work_keys_str_mv | AT xuwenjuan rapidlabelfreeandsensitivepointofcaretestingofantisarscov2igmiggusingallfiberfresnelreflectionmicrofluidicbiosensor AT liujiayao rapidlabelfreeandsensitivepointofcaretestingofantisarscov2igmiggusingallfiberfresnelreflectionmicrofluidicbiosensor AT songdan rapidlabelfreeandsensitivepointofcaretestingofantisarscov2igmiggusingallfiberfresnelreflectionmicrofluidicbiosensor AT lichunsheng rapidlabelfreeandsensitivepointofcaretestingofantisarscov2igmiggusingallfiberfresnelreflectionmicrofluidicbiosensor AT zhuanna rapidlabelfreeandsensitivepointofcaretestingofantisarscov2igmiggusingallfiberfresnelreflectionmicrofluidicbiosensor AT longfeng rapidlabelfreeandsensitivepointofcaretestingofantisarscov2igmiggusingallfiberfresnelreflectionmicrofluidicbiosensor |