Cargando…

Gaze patterns during presentation of fixed and random phase radial frequency patterns

Radial frequency (RF) patterns, circles which have had their radius modulated as a function of their polar angle, have been used in the examination of the integration of contour information around closed contour patterns. Typically, these patterns have been presented in a random orientation from tri...

Descripción completa

Detalles Bibliográficos
Autores principales: Green, Robert J., Shahzad, Amal, Fallah, Mazyar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287044/
https://www.ncbi.nlm.nih.gov/pubmed/34241621
http://dx.doi.org/10.1167/jov.21.7.2
Descripción
Sumario:Radial frequency (RF) patterns, circles which have had their radius modulated as a function of their polar angle, have been used in the examination of the integration of contour information around closed contour patterns. Typically, these patterns have been presented in a random orientation from trial-to-trial in order to maintain spatial uncertainty as to the location of the deformation on the pattern, as it may affect observer strategy and performance. However, the effect of fixed and random orientation (phase) on observer gaze strategies used to discriminate RF patterns has not been directly tested. This study compared fixation patterns across four conditions: fixed phase single cycle; random phase single cycle; fixed phase three cycle; and random phase three cycle RF3 patterns. The results showed that observers fixated on the known location of deformation for the fixed phase single cycle condition but used a more central fixation for the other three conditions. This strategy had a significant effect on observer thresholds for the fixed phase single cycle condition, with greater adherence to the strategy resulting in lower thresholds. It was also found that for the single cycle patterns observers tended to fixate on different locations on the pattern: on the maximum orientation difference from circular for the fixed phase pattern; and on the point of maximum curvature for the random phase pattern. These differences in gaze patterns are likely driven by the underlying local or global processing of the fixed or random phase single cycle patterns, respectively.