Cargando…
Differential phosphoprotein signaling in the cortex in mouse models of Gulf War Illness using corticosterone and acetylcholinesterase inhibitors
AIMS: Veterans from the 1990–91 Gulf War were exposed to acetylcholinesterase inhibitors (AChEIs), and, following service, an estimated one-third began suffering from a medically unexplained, multi-symptom illness termed Gulf War Illness (GWI). Previous research has developed validated rodent models...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287240/ https://www.ncbi.nlm.nih.gov/pubmed/34307952 http://dx.doi.org/10.1016/j.heliyon.2021.e07552 |
_version_ | 1783723873159610368 |
---|---|
author | Penatzer, Julia A. Miller, Julie V. Prince, Nicole Shaw, Misa Lynch, Cayla Newman, Mackenzie Hobbs, Gerald R. Boyd, Jonathan W. |
author_facet | Penatzer, Julia A. Miller, Julie V. Prince, Nicole Shaw, Misa Lynch, Cayla Newman, Mackenzie Hobbs, Gerald R. Boyd, Jonathan W. |
author_sort | Penatzer, Julia A. |
collection | PubMed |
description | AIMS: Veterans from the 1990–91 Gulf War were exposed to acetylcholinesterase inhibitors (AChEIs), and, following service, an estimated one-third began suffering from a medically unexplained, multi-symptom illness termed Gulf War Illness (GWI). Previous research has developed validated rodent models that include exposure to exogenous corticosterone (CORT) and AChEIs to simulate high stress and chemical exposures encountered in theater. This combination of exposures in mice resulted in a marked increase in neuroinflammation, which is a common symptom of veterans suffering from GWI. To further elucidate the mechanisms associated with these mouse models of GWI, an investigation into intracellular responses in the cortex were performed to characterize the early cellular signaling changes associated with this exposure-initiated neuroinflammation. MAIN METHODS: Adult male C57BL/6J mice were exposed to CORT in the drinking water (200 μg/mL) for 7 days followed by a single intraperitoneal injection of diisopropyl fluorophosphate (DFP; 4.0 mg/kg) or chlorpyrifos oxon (CPO; 8.0 mg/kg), on day 8 and euthanized 0.5, 2, and 24 h post-injection. Eleven post-translationally modified protein targets were measured using a multiplexed ELISA. KEY FINDINGS: Phosphoprotein responses were found to be exposure specific following AChEI insult, with and without CORT. Specifically, CORT + CPO exposure was found to sequentially activate several phosphoproteins involved in mitogen activated protein kinase signaling (p-MEK1/2, p-ERK1/2, and p-JNK). DFP alone similarly increased proteins in this pathway (p-RPS6, and p-JNK), but the addition of CORT ameliorated these affects. SIGNIFICANCE: The results of this study provide insight into differentially activated pathways depending on AChEI in these GWI models. |
format | Online Article Text |
id | pubmed-8287240 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-82872402021-07-22 Differential phosphoprotein signaling in the cortex in mouse models of Gulf War Illness using corticosterone and acetylcholinesterase inhibitors Penatzer, Julia A. Miller, Julie V. Prince, Nicole Shaw, Misa Lynch, Cayla Newman, Mackenzie Hobbs, Gerald R. Boyd, Jonathan W. Heliyon Research Article AIMS: Veterans from the 1990–91 Gulf War were exposed to acetylcholinesterase inhibitors (AChEIs), and, following service, an estimated one-third began suffering from a medically unexplained, multi-symptom illness termed Gulf War Illness (GWI). Previous research has developed validated rodent models that include exposure to exogenous corticosterone (CORT) and AChEIs to simulate high stress and chemical exposures encountered in theater. This combination of exposures in mice resulted in a marked increase in neuroinflammation, which is a common symptom of veterans suffering from GWI. To further elucidate the mechanisms associated with these mouse models of GWI, an investigation into intracellular responses in the cortex were performed to characterize the early cellular signaling changes associated with this exposure-initiated neuroinflammation. MAIN METHODS: Adult male C57BL/6J mice were exposed to CORT in the drinking water (200 μg/mL) for 7 days followed by a single intraperitoneal injection of diisopropyl fluorophosphate (DFP; 4.0 mg/kg) or chlorpyrifos oxon (CPO; 8.0 mg/kg), on day 8 and euthanized 0.5, 2, and 24 h post-injection. Eleven post-translationally modified protein targets were measured using a multiplexed ELISA. KEY FINDINGS: Phosphoprotein responses were found to be exposure specific following AChEI insult, with and without CORT. Specifically, CORT + CPO exposure was found to sequentially activate several phosphoproteins involved in mitogen activated protein kinase signaling (p-MEK1/2, p-ERK1/2, and p-JNK). DFP alone similarly increased proteins in this pathway (p-RPS6, and p-JNK), but the addition of CORT ameliorated these affects. SIGNIFICANCE: The results of this study provide insight into differentially activated pathways depending on AChEI in these GWI models. Elsevier 2021-07-12 /pmc/articles/PMC8287240/ /pubmed/34307952 http://dx.doi.org/10.1016/j.heliyon.2021.e07552 Text en © 2021 The Authors. Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Penatzer, Julia A. Miller, Julie V. Prince, Nicole Shaw, Misa Lynch, Cayla Newman, Mackenzie Hobbs, Gerald R. Boyd, Jonathan W. Differential phosphoprotein signaling in the cortex in mouse models of Gulf War Illness using corticosterone and acetylcholinesterase inhibitors |
title | Differential phosphoprotein signaling in the cortex in mouse models of Gulf War Illness using corticosterone and acetylcholinesterase inhibitors |
title_full | Differential phosphoprotein signaling in the cortex in mouse models of Gulf War Illness using corticosterone and acetylcholinesterase inhibitors |
title_fullStr | Differential phosphoprotein signaling in the cortex in mouse models of Gulf War Illness using corticosterone and acetylcholinesterase inhibitors |
title_full_unstemmed | Differential phosphoprotein signaling in the cortex in mouse models of Gulf War Illness using corticosterone and acetylcholinesterase inhibitors |
title_short | Differential phosphoprotein signaling in the cortex in mouse models of Gulf War Illness using corticosterone and acetylcholinesterase inhibitors |
title_sort | differential phosphoprotein signaling in the cortex in mouse models of gulf war illness using corticosterone and acetylcholinesterase inhibitors |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287240/ https://www.ncbi.nlm.nih.gov/pubmed/34307952 http://dx.doi.org/10.1016/j.heliyon.2021.e07552 |
work_keys_str_mv | AT penatzerjuliaa differentialphosphoproteinsignalinginthecortexinmousemodelsofgulfwarillnessusingcorticosteroneandacetylcholinesteraseinhibitors AT millerjuliev differentialphosphoproteinsignalinginthecortexinmousemodelsofgulfwarillnessusingcorticosteroneandacetylcholinesteraseinhibitors AT princenicole differentialphosphoproteinsignalinginthecortexinmousemodelsofgulfwarillnessusingcorticosteroneandacetylcholinesteraseinhibitors AT shawmisa differentialphosphoproteinsignalinginthecortexinmousemodelsofgulfwarillnessusingcorticosteroneandacetylcholinesteraseinhibitors AT lynchcayla differentialphosphoproteinsignalinginthecortexinmousemodelsofgulfwarillnessusingcorticosteroneandacetylcholinesteraseinhibitors AT newmanmackenzie differentialphosphoproteinsignalinginthecortexinmousemodelsofgulfwarillnessusingcorticosteroneandacetylcholinesteraseinhibitors AT hobbsgeraldr differentialphosphoproteinsignalinginthecortexinmousemodelsofgulfwarillnessusingcorticosteroneandacetylcholinesteraseinhibitors AT boydjonathanw differentialphosphoproteinsignalinginthecortexinmousemodelsofgulfwarillnessusingcorticosteroneandacetylcholinesteraseinhibitors |