Cargando…

Automotive suspension component behaviors driven on flat and rough road surfaces

The objective of this study is to identify the behavior of the car suspension components subjected to road surface contours. Strain signals were measured by installing a strain gauge at the critical area of the coil spring and lower arm. The car was driven on a flat and rough road surface with speed...

Descripción completa

Detalles Bibliográficos
Autores principales: Putra, T.E., Husaini, Ikbal, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287242/
https://www.ncbi.nlm.nih.gov/pubmed/34307947
http://dx.doi.org/10.1016/j.heliyon.2021.e07528
Descripción
Sumario:The objective of this study is to identify the behavior of the car suspension components subjected to road surface contours. Strain signals were measured by installing a strain gauge at the critical area of the coil spring and lower arm. The car was driven on a flat and rough road surface with speeds of 30–40 km/h and 10–20 km/h, respectively. According to the fatigue life assessments based on the strain-life approach, it was found that when the car was driven on the rough road, the components received higher stresses, contributing to a shorter fatigue life. The fatigue life of the coil spring when being driven on the rough road was 1,248 cycles to failure, which was more than 14 times shorter when being driven on the flat road, with 19,060 cycles to failure. Meanwhile the fatigue life of the lower arm being driven on the rough surface was 3,580 cycles to failure, which was almost 3,328 times shorter when being driven on the flat road, with 11,914,000 cycles to failure. The useful life of the coil spring was more than 625 times lower than the lower arm when driven on the flat road, whereas when driven on the rough road, the useful life of the coil spring was almost 3 times lower than the lower arm. In conclusion, the coil spring will fail more than 2 times faster than the lower arm. This is because the contour of the road surfaces provide a vertical load, directly working the coil spring which reduces the load vertically, while the lower arm functions to hold the load when turning.