Cargando…
Protocol for resolving enzyme orientation and dynamics in advanced porous materials via SDSL-EPR
Enzyme encapsulation in metal-organic frameworks (MOFs)/covalent-organic frameworks (COFs) provides advancement in biocatalysis, yet the structural basis underlying the catalytic performance is challenging to probe. Here, we present an effective protocol to determine the orientation and dynamics of...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287244/ https://www.ncbi.nlm.nih.gov/pubmed/34308381 http://dx.doi.org/10.1016/j.xpro.2021.100676 |
Sumario: | Enzyme encapsulation in metal-organic frameworks (MOFs)/covalent-organic frameworks (COFs) provides advancement in biocatalysis, yet the structural basis underlying the catalytic performance is challenging to probe. Here, we present an effective protocol to determine the orientation and dynamics of enzymes in MOFs/COFs using site-directed spin labeling and electron paramagnetic resonance spectroscopy. The protocol is demonstrated using lysozyme and can be generalized to other enzymes. For complete information on the generation and use of this protocol, please refer to Pan et al. (2021a). |
---|