Cargando…

The hodograph equation for slow and fast anisotropic interface propagation

Using the model of fast phase transitions and previously reported equation of the Gibbs–Thomson-type, we develop an equation for the anisotropic interface motion of the Herring–Gibbs–Thomson-type. The derived equation takes the form of a hodograph equation and in its particular case describes motion...

Descripción completa

Detalles Bibliográficos
Autores principales: Galenko, P. K., Salhoumi, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287246/
https://www.ncbi.nlm.nih.gov/pubmed/34275359
http://dx.doi.org/10.1098/rsta.2020.0324
Descripción
Sumario:Using the model of fast phase transitions and previously reported equation of the Gibbs–Thomson-type, we develop an equation for the anisotropic interface motion of the Herring–Gibbs–Thomson-type. The derived equation takes the form of a hodograph equation and in its particular case describes motion by mean interface curvature, the relationship ‘velocity—Gibbs free energy’, Klein–Gordon and Born–Infeld equations related to the anisotropic propagation of various interfaces. Comparison of the present model predictions with the molecular-dynamics simulation data on nickel crystal growth (obtained by Jeffrey J. Hoyt et al. and published in Acta Mater. 47 (1999) 3181) confirms the validity of the derived hodograph equation as applicable to the slow and fast modes of interface propagation. This article is part of the theme issue ‘Transport phenomena in complex systems (part 1)’.