Cargando…
The hodograph equation for slow and fast anisotropic interface propagation
Using the model of fast phase transitions and previously reported equation of the Gibbs–Thomson-type, we develop an equation for the anisotropic interface motion of the Herring–Gibbs–Thomson-type. The derived equation takes the form of a hodograph equation and in its particular case describes motion...
Autores principales: | Galenko, P. K., Salhoumi, A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287246/ https://www.ncbi.nlm.nih.gov/pubmed/34275359 http://dx.doi.org/10.1098/rsta.2020.0324 |
Ejemplares similares
-
Pythagorean-hodograph curves algebra and geometry inseparable
por: Farouki, Rida T
Publicado: (2008) -
Ultrafast anisotropic dynamics of hyperbolic nanolight pulse propagation
por: Zhang, Xin, et al.
Publicado: (2023) -
Wave propagation in layered anisotropic media: with application to composites
por: Nayfeh, AH
Publicado: (1995) -
Anisotropic conduction in the myocardium due to fibrosis: the effect of texture on wave propagation
por: Nezlobinsky, T., et al.
Publicado: (2020) -
Anisotropic Propagation of Chemical Grouting in Fracture
Network with Flowing Water
por: Jiang, Xiangming, et al.
Publicado: (2021)