Cargando…

Dynamic Radiostereometry Evaluation of 2 Different Anterior Cruciate Ligament Reconstruction Techniques During a Single-Leg Squat

BACKGROUND: Lateral extra-articular tenodesis in the context of anterior cruciate ligament (ACL) reconstruction (ACLR) is performed to better control anterolateral knee instability in patients with high-grade preoperative pivot shift. However, some authors believe these procedures may cause lateral...

Descripción completa

Detalles Bibliográficos
Autores principales: Di Paolo, Stefano, Agostinone, Piero, Grassi, Alberto, Lucidi, Gian Andrea, Pinelli, Erika, Bontempi, Marco, Marchiori, Gregorio, Bragonzoni, Laura, Zaffagnini, Stefano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287361/
https://www.ncbi.nlm.nih.gov/pubmed/34350300
http://dx.doi.org/10.1177/23259671211011940
Descripción
Sumario:BACKGROUND: Lateral extra-articular tenodesis in the context of anterior cruciate ligament (ACL) reconstruction (ACLR) is performed to better control anterolateral knee instability in patients with high-grade preoperative pivot shift. However, some authors believe these procedures may cause lateral compartment overconstraint, affecting knee motion in daily life. PURPOSE/HYPOTHESIS: The primary aim of the present study was to identify kinematic differences during the execution of an activity under weightbearing conditions between knees having undergone ACLR using anatomic single-bundle (SB) versus single-bundle plus lateral plasty (SBLP) techniques. The secondary aim was to compare the postoperative kinematic data with those from the same knees before ACLR and from the healthy contralateral knees in order to investigate if ACLR was able to restore physiologic knee biomechanics during squat execution. The hypotheses were that (1) the SBLP technique would allow a better restoration of internal-external (IE) knee rotation than would SB and (2) regardless of the technique, ACLR would not fully restore physiologic knee biomechanics. STUDY DESIGN: Randomized controlled trial; Level of evidence, 2. METHODS: In total, 32 patients (42 knees) were included in the study. Patients were asked to perform a single-leg squat before surgery (ACL-injured group, n = 32; healthy contralateral group, n = 10) and at minimum 18-month follow-up after ACLR (SB group, n = 9; SBLP group, n = 18). Knee motion was determined using a validated model-based tracking process that matched patient-specific magnetic resonance imaging bone models to dynamic biplane radiographic images under the principles of roentgen stereophotogrammetric analysis. Data processing was performed using specific software. The authors compared IE and varus-valgus rotations and anterior-posterior and medial-lateral translations among the groups. RESULTS: The mean follow-up period was 21.7 ± 4.5 months. No kinematic differences were found between the SB and SBLP groups (P > .05). A more medial tibial position (P < .05) of the ACL-injured group was reported during the entire motor task and persisted after ACLR in both the SB and the SBLP groups. Differences in IE and varus-valgus rotations were found between the ACL-injured and healthy groups. CONCLUSION: There were no relevant kinematic differences between SBLP and anatomic SB ACLR during the execution of a single-leg squat. Regardless of the surgical technique, ACLR failed in restoring knee biomechanics. REGISTRATION: NCT02323386 (ClinicalTrials.gov identifier).