Cargando…
Exploring Feasibility of Multivariate Deep Learning Models in Predicting COVID-19 Epidemic
Background: Mathematical models are powerful tools to study COVID-19. However, one fundamental challenge in current modeling approaches is the lack of accurate and comprehensive data. Complex epidemiological systems such as COVID-19 are especially challenging to the commonly used mechanistic model w...
Autores principales: | Chen, Shi, Paul, Rajib, Janies, Daniel, Murphy, Keith, Feng, Tinghao, Thill, Jean-Claude |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287417/ https://www.ncbi.nlm.nih.gov/pubmed/34291025 http://dx.doi.org/10.3389/fpubh.2021.661615 |
Ejemplares similares
-
Content and sentiment surveillance (CSI): A critical component for modeling modern epidemics
por: Chen, Shi, et al.
Publicado: (2023) -
Forecasting the 2020 COVID-19 Epidemic: A Multivariate Quasi-Poisson Regression to Model the Evolution of New Cases in Chile
por: Vicuña, María Ignacia, et al.
Publicado: (2021) -
A deep transfer learning approach for COVID-19 detection and exploring a sense of belonging with Diabetes
por: Ahmad, Ijaz, et al.
Publicado: (2023) -
Feasibility of Intersectoral Collaboration in Epidemic Preparedness and Response at Grassroots Levels in the Threat of COVID-19 Pandemic in Vietnam
por: Le, Huong Thi, et al.
Publicado: (2020) -
FLED-Block: Federated Learning Ensembled Deep Learning Blockchain Model for COVID-19 Prediction
por: Durga, R., et al.
Publicado: (2022)