Cargando…
Convolutional Rebalancing Network for the Classification of Large Imbalanced Rice Pest and Disease Datasets in the Field
The accurate classification of crop pests and diseases is essential for their prevention and control. However, datasets of pest and disease images collected in the field usually exhibit long-tailed distributions with heavy category imbalance, posing great challenges for a deep recognition and classi...
Autores principales: | Yang, Guofeng, Chen, Guipeng, Li, Cong, Fu, Jiangfan, Guo, Yang, Liang, Hua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287420/ https://www.ncbi.nlm.nih.gov/pubmed/34290724 http://dx.doi.org/10.3389/fpls.2021.671134 |
Ejemplares similares
-
Soybean seed proteome rebalancing
por: Herman, Eliot M.
Publicado: (2014) -
Crop pest image classification based on improved densely connected convolutional network
por: Peng, Hongxing, et al.
Publicado: (2023) -
A Framework of Rebalancing Imbalanced Healthcare Data for Rare Events' Classification: A Case of Look-Alike Sound-Alike Mix-Up Incident Detection
por: Zhao, Yang, et al.
Publicado: (2018) -
Overlap-Based Undersampling Method for Classification of Imbalanced Medical Datasets
por: Vuttipittayamongkol, Pattaramon, et al.
Publicado: (2020) -
Stable polyp-scene classification via subsampling and residual learning from an imbalanced large dataset
por: Itoh, Hayato, et al.
Publicado: (2019)