Cargando…
The Efficacy of Phage Therapy in a Murine Model of Pseudomonas aeruginosa Pneumonia and Sepsis
The emergence of multi-drug resistant Pseudomonas aeruginosa necessitates the search for treatment options other than antibiotic use. The use of bacteriophages is currently being considered as an alternative to antibiotics for the treatment of bacterial infections. A number of bacteriophages were in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287650/ https://www.ncbi.nlm.nih.gov/pubmed/34290683 http://dx.doi.org/10.3389/fmicb.2021.682255 |
_version_ | 1783723950961852416 |
---|---|
author | Yang, Xu Haque, Anwarul Matsuzaki, Shigenobu Matsumoto, Tetsuya Nakamura, Shigeki |
author_facet | Yang, Xu Haque, Anwarul Matsuzaki, Shigenobu Matsumoto, Tetsuya Nakamura, Shigeki |
author_sort | Yang, Xu |
collection | PubMed |
description | The emergence of multi-drug resistant Pseudomonas aeruginosa necessitates the search for treatment options other than antibiotic use. The use of bacteriophages is currently being considered as an alternative to antibiotics for the treatment of bacterial infections. A number of bacteriophages were introduced to treat pneumonia in past reports. However, there are still lack of knowledge regarding the dosages, application time, mechanism and safety of phage therapy against P. aeruginosa pneumonia. We used the bacteriophage KPP10 against P. aeruginosa strain D4-induced pneumonia mouse models and observed their outcomes in comparison to control models. We found that the nasal inhalation of highly concentrated KPP10 (MOI = 80) significantly improved survival rate in pneumonia models (P < 0.01). The number of viable bacteria in both lungs and in serum were significantly decreased (P < 0.01) in phage-treated mice in comparison to the control mice. Pathological examination showed that phage-treated group had significantly reduced bleeding, inflammatory cell infiltration, and mucus secretion in lung interstitium. We also measured inflammatory cytokine levels in the serum and lung homogenates of mice. In phage-treated models, serum TNFα, IL-1β, and IFN-γ levels were significantly lower (P < 0.05, P < 0.01, and P < 0.05, respectively) than those in the control models. In the lung homogenate, the mean IL-1β level in phage-treated models was significantly lower (P < 0.05) than that of the control group. We confirmed the presence of phage in blood and lungs, and evaluated the safety of bacteriophage use in living models since bacteriophage mediated bacterial lysis arise concern of endotoxic shock. The study results suggest that phage therapy can potentially be used in treating lung infections caused by Pseudomonas aeruginosa. |
format | Online Article Text |
id | pubmed-8287650 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82876502021-07-20 The Efficacy of Phage Therapy in a Murine Model of Pseudomonas aeruginosa Pneumonia and Sepsis Yang, Xu Haque, Anwarul Matsuzaki, Shigenobu Matsumoto, Tetsuya Nakamura, Shigeki Front Microbiol Microbiology The emergence of multi-drug resistant Pseudomonas aeruginosa necessitates the search for treatment options other than antibiotic use. The use of bacteriophages is currently being considered as an alternative to antibiotics for the treatment of bacterial infections. A number of bacteriophages were introduced to treat pneumonia in past reports. However, there are still lack of knowledge regarding the dosages, application time, mechanism and safety of phage therapy against P. aeruginosa pneumonia. We used the bacteriophage KPP10 against P. aeruginosa strain D4-induced pneumonia mouse models and observed their outcomes in comparison to control models. We found that the nasal inhalation of highly concentrated KPP10 (MOI = 80) significantly improved survival rate in pneumonia models (P < 0.01). The number of viable bacteria in both lungs and in serum were significantly decreased (P < 0.01) in phage-treated mice in comparison to the control mice. Pathological examination showed that phage-treated group had significantly reduced bleeding, inflammatory cell infiltration, and mucus secretion in lung interstitium. We also measured inflammatory cytokine levels in the serum and lung homogenates of mice. In phage-treated models, serum TNFα, IL-1β, and IFN-γ levels were significantly lower (P < 0.05, P < 0.01, and P < 0.05, respectively) than those in the control models. In the lung homogenate, the mean IL-1β level in phage-treated models was significantly lower (P < 0.05) than that of the control group. We confirmed the presence of phage in blood and lungs, and evaluated the safety of bacteriophage use in living models since bacteriophage mediated bacterial lysis arise concern of endotoxic shock. The study results suggest that phage therapy can potentially be used in treating lung infections caused by Pseudomonas aeruginosa. Frontiers Media S.A. 2021-07-05 /pmc/articles/PMC8287650/ /pubmed/34290683 http://dx.doi.org/10.3389/fmicb.2021.682255 Text en Copyright © 2021 Yang, Haque, Matsuzaki, Matsumoto and Nakamura. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Yang, Xu Haque, Anwarul Matsuzaki, Shigenobu Matsumoto, Tetsuya Nakamura, Shigeki The Efficacy of Phage Therapy in a Murine Model of Pseudomonas aeruginosa Pneumonia and Sepsis |
title | The Efficacy of Phage Therapy in a Murine Model of Pseudomonas aeruginosa Pneumonia and Sepsis |
title_full | The Efficacy of Phage Therapy in a Murine Model of Pseudomonas aeruginosa Pneumonia and Sepsis |
title_fullStr | The Efficacy of Phage Therapy in a Murine Model of Pseudomonas aeruginosa Pneumonia and Sepsis |
title_full_unstemmed | The Efficacy of Phage Therapy in a Murine Model of Pseudomonas aeruginosa Pneumonia and Sepsis |
title_short | The Efficacy of Phage Therapy in a Murine Model of Pseudomonas aeruginosa Pneumonia and Sepsis |
title_sort | efficacy of phage therapy in a murine model of pseudomonas aeruginosa pneumonia and sepsis |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287650/ https://www.ncbi.nlm.nih.gov/pubmed/34290683 http://dx.doi.org/10.3389/fmicb.2021.682255 |
work_keys_str_mv | AT yangxu theefficacyofphagetherapyinamurinemodelofpseudomonasaeruginosapneumoniaandsepsis AT haqueanwarul theefficacyofphagetherapyinamurinemodelofpseudomonasaeruginosapneumoniaandsepsis AT matsuzakishigenobu theefficacyofphagetherapyinamurinemodelofpseudomonasaeruginosapneumoniaandsepsis AT matsumototetsuya theefficacyofphagetherapyinamurinemodelofpseudomonasaeruginosapneumoniaandsepsis AT nakamurashigeki theefficacyofphagetherapyinamurinemodelofpseudomonasaeruginosapneumoniaandsepsis AT yangxu efficacyofphagetherapyinamurinemodelofpseudomonasaeruginosapneumoniaandsepsis AT haqueanwarul efficacyofphagetherapyinamurinemodelofpseudomonasaeruginosapneumoniaandsepsis AT matsuzakishigenobu efficacyofphagetherapyinamurinemodelofpseudomonasaeruginosapneumoniaandsepsis AT matsumototetsuya efficacyofphagetherapyinamurinemodelofpseudomonasaeruginosapneumoniaandsepsis AT nakamurashigeki efficacyofphagetherapyinamurinemodelofpseudomonasaeruginosapneumoniaandsepsis |