Cargando…
Using Machine Learning to Characterize Atrial Fibrotic Substrate From Intracardiac Signals With a Hybrid in silico and in vivo Dataset
In patients with atrial fibrillation, intracardiac electrogram signal amplitude is known to decrease with increased structural tissue remodeling, referred to as fibrosis. In addition to the isolation of the pulmonary veins, fibrotic sites are considered a suitable target for catheter ablation. Howev...
Autores principales: | Sánchez, Jorge, Luongo, Giorgio, Nothstein, Mark, Unger, Laura A., Saiz, Javier, Trenor, Beatriz, Luik, Armin, Dössel, Olaf, Loewe, Axel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287829/ https://www.ncbi.nlm.nih.gov/pubmed/34290623 http://dx.doi.org/10.3389/fphys.2021.699291 |
Ejemplares similares
-
Fibrotic Remodeling during Persistent Atrial Fibrillation: In Silico Investigation of the Role of Calcium for Human Atrial Myofibroblast Electrophysiology
por: Sánchez, Jorge, et al.
Publicado: (2021) -
CVAR-Seg: An Automated Signal Segmentation Pipeline for Conduction Velocity and Amplitude Restitution
por: Nothstein, Mark, et al.
Publicado: (2021) -
Hybrid machine learning to localize atrial flutter substrates using the surface 12-lead electrocardiogram
por: Luongo, Giorgio, et al.
Publicado: (2022) -
Commentary: Virtual In-Silico Modeling Guided Catheter Ablation Predicts Effective Linear Ablation Lesion Set for Longstanding Persistent Atrial Fibrillation: Multicenter Prospective Randomized Study
por: Loewe, Axel, et al.
Publicado: (2017) -
Patient-Specific Identification of Atrial Flutter Vulnerability–A Computational Approach to Reveal Latent Reentry Pathways
por: Loewe, Axel, et al.
Publicado: (2019)