Cargando…
A self-attention model for inferring cooperativity between regulatory features
Deep learning has demonstrated its predictive power in modeling complex biological phenomena such as gene expression. The value of these models hinges not only on their accuracy, but also on the ability to extract biologically relevant information from the trained models. While there has been much r...
Autores principales: | Ullah, Fahad, Ben-Hur, Asa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287919/ https://www.ncbi.nlm.nih.gov/pubmed/33950192 http://dx.doi.org/10.1093/nar/gkab349 |
Ejemplares similares
-
Large-scale modeling of condition-specific gene regulatory networks by information integration and inference
por: Ellwanger, Daniel Christian, et al.
Publicado: (2014) -
Detecting cis-regulatory binding sites for cooperatively binding proteins
por: van Oeffelen, Liesbeth, et al.
Publicado: (2008) -
A prior-based integrative framework for functional transcriptional regulatory network inference
por: Siahpirani, Alireza F., et al.
Publicado: (2017) -
Convolutional neural network model to predict causal risk factors that share complex regulatory features
por: Lee, Taeyeop, et al.
Publicado: (2019) -
i-cisTarget: an integrative genomics method for the prediction of regulatory features and cis-regulatory modules
por: Herrmann, Carl, et al.
Publicado: (2012)