Cargando…

Integrated Analysis of lncRNAs, mRNAs, and TFs to Identify Regulatory Networks Underlying MAP Infection in Cattle

Johne’s disease is a chronic infection of ruminants that burdens dairy herds with a significant economic loss. The pathogenesis of the disease has not been revealed clearly due to its complex nature. In order to achieve deeper biological insights into molecular mechanisms involved in MAP infection r...

Descripción completa

Detalles Bibliográficos
Autores principales: Heidari, Maryam, Pakdel, Abbas, Bakhtiarizadeh, Mohammad Reza, Dehghanian, Fariba
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287970/
https://www.ncbi.nlm.nih.gov/pubmed/34290737
http://dx.doi.org/10.3389/fgene.2021.668448
_version_ 1783724011976392704
author Heidari, Maryam
Pakdel, Abbas
Bakhtiarizadeh, Mohammad Reza
Dehghanian, Fariba
author_facet Heidari, Maryam
Pakdel, Abbas
Bakhtiarizadeh, Mohammad Reza
Dehghanian, Fariba
author_sort Heidari, Maryam
collection PubMed
description Johne’s disease is a chronic infection of ruminants that burdens dairy herds with a significant economic loss. The pathogenesis of the disease has not been revealed clearly due to its complex nature. In order to achieve deeper biological insights into molecular mechanisms involved in MAP infection resulting in Johne’s disease, a system biology approach was used. As far as is known, this is the first study that considers lncRNAs, TFs, and mRNAs, simultaneously, to construct an integrated gene regulatory network involved in MAP infection. Weighted gene coexpression network analysis (WGCNA) and functional enrichment analysis were conducted to explore coexpression modules from which nonpreserved modules had altered connectivity patterns. After identification of hub and hub-hub genes as well as TFs and lncRNAs in the nonpreserved modules, integrated networks of lncRNA-mRNA-TF were constructed, and cis and trans targets of lncRNAs were identified. Both cis and trans targets of lncRNAs were found in eight nonpreserved modules. Twenty-one of 47 nonpreserved modules showed significant biological processes related to the immune system and MAP infection. Some of the MAP infection’s related pathways in the most important nonpreserved modules comprise “positive regulation of cytokine-mediated signaling pathway,” “negative regulation of leukocyte migration,” “T-cell differentiation,” “neutrophil activation,” and “defense response.” Furthermore, several genes were identified in these modules, including SLC11A1, MAPK8IP1, HMGCR, IFNGR1, CMPK2, CORO1A, IRF1, LDLR, BOLA-DMB, and BOLA-DMA, which are potentially associated with MAP pathogenesis. This study not only enhanced our knowledge of molecular mechanisms behind MAP infection but also highlighted several promising hub and hub-hub genes involved in macrophage-pathogen interaction.
format Online
Article
Text
id pubmed-8287970
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-82879702021-07-20 Integrated Analysis of lncRNAs, mRNAs, and TFs to Identify Regulatory Networks Underlying MAP Infection in Cattle Heidari, Maryam Pakdel, Abbas Bakhtiarizadeh, Mohammad Reza Dehghanian, Fariba Front Genet Genetics Johne’s disease is a chronic infection of ruminants that burdens dairy herds with a significant economic loss. The pathogenesis of the disease has not been revealed clearly due to its complex nature. In order to achieve deeper biological insights into molecular mechanisms involved in MAP infection resulting in Johne’s disease, a system biology approach was used. As far as is known, this is the first study that considers lncRNAs, TFs, and mRNAs, simultaneously, to construct an integrated gene regulatory network involved in MAP infection. Weighted gene coexpression network analysis (WGCNA) and functional enrichment analysis were conducted to explore coexpression modules from which nonpreserved modules had altered connectivity patterns. After identification of hub and hub-hub genes as well as TFs and lncRNAs in the nonpreserved modules, integrated networks of lncRNA-mRNA-TF were constructed, and cis and trans targets of lncRNAs were identified. Both cis and trans targets of lncRNAs were found in eight nonpreserved modules. Twenty-one of 47 nonpreserved modules showed significant biological processes related to the immune system and MAP infection. Some of the MAP infection’s related pathways in the most important nonpreserved modules comprise “positive regulation of cytokine-mediated signaling pathway,” “negative regulation of leukocyte migration,” “T-cell differentiation,” “neutrophil activation,” and “defense response.” Furthermore, several genes were identified in these modules, including SLC11A1, MAPK8IP1, HMGCR, IFNGR1, CMPK2, CORO1A, IRF1, LDLR, BOLA-DMB, and BOLA-DMA, which are potentially associated with MAP pathogenesis. This study not only enhanced our knowledge of molecular mechanisms behind MAP infection but also highlighted several promising hub and hub-hub genes involved in macrophage-pathogen interaction. Frontiers Media S.A. 2021-07-05 /pmc/articles/PMC8287970/ /pubmed/34290737 http://dx.doi.org/10.3389/fgene.2021.668448 Text en Copyright © 2021 Heidari, Pakdel, Bakhtiarizadeh and Dehghanian. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Genetics
Heidari, Maryam
Pakdel, Abbas
Bakhtiarizadeh, Mohammad Reza
Dehghanian, Fariba
Integrated Analysis of lncRNAs, mRNAs, and TFs to Identify Regulatory Networks Underlying MAP Infection in Cattle
title Integrated Analysis of lncRNAs, mRNAs, and TFs to Identify Regulatory Networks Underlying MAP Infection in Cattle
title_full Integrated Analysis of lncRNAs, mRNAs, and TFs to Identify Regulatory Networks Underlying MAP Infection in Cattle
title_fullStr Integrated Analysis of lncRNAs, mRNAs, and TFs to Identify Regulatory Networks Underlying MAP Infection in Cattle
title_full_unstemmed Integrated Analysis of lncRNAs, mRNAs, and TFs to Identify Regulatory Networks Underlying MAP Infection in Cattle
title_short Integrated Analysis of lncRNAs, mRNAs, and TFs to Identify Regulatory Networks Underlying MAP Infection in Cattle
title_sort integrated analysis of lncrnas, mrnas, and tfs to identify regulatory networks underlying map infection in cattle
topic Genetics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8287970/
https://www.ncbi.nlm.nih.gov/pubmed/34290737
http://dx.doi.org/10.3389/fgene.2021.668448
work_keys_str_mv AT heidarimaryam integratedanalysisoflncrnasmrnasandtfstoidentifyregulatorynetworksunderlyingmapinfectionincattle
AT pakdelabbas integratedanalysisoflncrnasmrnasandtfstoidentifyregulatorynetworksunderlyingmapinfectionincattle
AT bakhtiarizadehmohammadreza integratedanalysisoflncrnasmrnasandtfstoidentifyregulatorynetworksunderlyingmapinfectionincattle
AT dehghanianfariba integratedanalysisoflncrnasmrnasandtfstoidentifyregulatorynetworksunderlyingmapinfectionincattle