Cargando…
Convolutional neural networks can decode eye movement data: A black box approach to predicting task from eye movements
Previous attempts to classify task from eye movement data have relied on model architectures designed to emulate theoretically defined cognitive processes and/or data that have been processed into aggregate (e.g., fixations, saccades) or statistical (e.g., fixation density) features. Black box convo...
Autores principales: | Cole, Zachary J., Kuntzelman, Karl M., Dodd, Michael D., Johnson, Matthew R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8288051/ https://www.ncbi.nlm.nih.gov/pubmed/34264288 http://dx.doi.org/10.1167/jov.21.7.9 |
Ejemplares similares
-
Eye Movement-Related Confounds in Neural Decoding of Visual Working Memory Representations
por: Mostert, Pim, et al.
Publicado: (2018) -
Guiding visual attention in deep convolutional neural networks based on human eye movements
por: van Dyck, Leonard Elia, et al.
Publicado: (2022) -
Isolating Discriminant Neural Activity in the Presence of Eye Movements and Concurrent Task Demands
por: Touryan, Jon, et al.
Publicado: (2017) -
Predicting eye movements in a contour detection task
por: Ernst, Udo, et al.
Publicado: (2012) -
Task-Related Differences in Eye Movements in Individuals With Aphasia
por: Smith, Kimberly G., et al.
Publicado: (2018)