Cargando…
Spatio‐temporal graph convolutional network for diagnosis and treatment response prediction of major depressive disorder from functional connectivity
The pathophysiology of major depressive disorder (MDD) has been explored to be highly associated with the dysfunctional integration of brain networks. It is therefore imperative to explore neuroimaging biomarkers to aid diagnosis and treatment. In this study, we developed a spatiotemporal graph conv...
Autores principales: | Kong, Youyong, Gao, Shuwen, Yue, Yingying, Hou, Zhenhua, Shu, Huazhong, Xie, Chunming, Zhang, Zhijun, Yuan, Yonggui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8288094/ https://www.ncbi.nlm.nih.gov/pubmed/33969930 http://dx.doi.org/10.1002/hbm.25529 |
Ejemplares similares
-
Dopamine Multilocus Genetic Profile, Spontaneous Activity of Left Superior Temporal Gyrus, and Early Therapeutic Effect in Major Depressive Disorder
por: Liu, Xiaoyun, et al.
Publicado: (2020) -
A Spatio-Temporal Graph Convolutional Network Model for Internet of Medical Things (IoMT)
por: Ghosh, Dipon Kumar, et al.
Publicado: (2022) -
Spatio-temporal graph data analytics
por: Gunturi, Venkata M V, et al.
Publicado: (2017) -
Image denoising via a non-local patch graph total variation
por: Zhang, Yan, et al.
Publicado: (2019) -
STSC-SNN: Spatio-Temporal Synaptic Connection with temporal convolution and attention for spiking neural networks
por: Yu, Chengting, et al.
Publicado: (2022)