Cargando…

Ultra-high piezoelectric coefficients and strain-sensitive Curie temperature in hydrogen-bonded systems

We propose a new approach to obtain ultra-high piezoelectric coefficients that can be infinitely large theoretically, where ferroelectrics with strain-sensitive Curie temperature are necessary. We show the first-principles plus Monte Carlo simulation evidence that many hydrogen-bonded ferroelectrics...

Descripción completa

Detalles Bibliográficos
Autores principales: Ren, Yangyang, Wu, Menghao, Liu, Jun-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8288374/
https://www.ncbi.nlm.nih.gov/pubmed/34691594
http://dx.doi.org/10.1093/nsr/nwaa203
Descripción
Sumario:We propose a new approach to obtain ultra-high piezoelectric coefficients that can be infinitely large theoretically, where ferroelectrics with strain-sensitive Curie temperature are necessary. We show the first-principles plus Monte Carlo simulation evidence that many hydrogen-bonded ferroelectrics (e.g. organic PhMDA) can be ideal candidates, which are also flexible and lead-free. Owing to the specific features of hydrogen bonding, their proton hopping barrier will drastically increase with prolonged proton transfer distance, while their hydrogen-bonded network can be easily compressed or stretched due to softness of hydrogen bonds. Their barriers as well as the Curie temperature can be approximately doubled upon a tensile strain as low as 2%. Their Curie temperature can be tuned exactly to room temperature by fixing a strain in one direction, and in another direction, an unprecedented ultra-high piezoelectric coefficient of 2058 pC/N can be obtained. This value is even underestimated and can be greatly enhanced when applying a smaller strain. Aside from sensors, they can also be utilized for converting either mechanical or thermal energies into electrical energies due to high pyroelectric coefficients.