Cargando…

Empirical estimates of regional carbon budgets imply reduced global soil heterotrophic respiration

Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land–a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ciais, Philippe, Yao, Yitong, Gasser, Thomas, Baccini, Alessandro, Wang, Yilong, Lauerwald, Ronny, Peng, Shushi, Bastos, Ana, Li, Wei, Raymond, Peter A, Canadell, Josep G, Peters, Glen P, Andres, Rob J, Chang, Jinfeng, Yue, Chao, Dolman, A Johannes, Haverd, Vanessa, Hartmann, Jens, Laruelle, Goulven, Konings, Alexandra G, King, Anthony W, Liu, Yi, Luyssaert, Sebastiaan, Maignan, Fabienne, Patra, Prabir K, Peregon, Anna, Regnier, Pierre, Pongratz, Julia, Poulter, Benjamin, Shvidenko, Anatoly, Valentini, Riccardo, Wang, Rong, Broquet, Grégoire, Yin, Yi, Zscheischler, Jakob, Guenet, Bertrand, Goll, Daniel S, Ballantyne, Ashley-P, Yang, Hui, Qiu, Chunjing, Zhu, Dan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8288404/
https://www.ncbi.nlm.nih.gov/pubmed/34691569
http://dx.doi.org/10.1093/nsr/nwaa145
Descripción
Sumario:Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land–atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global ‘bottom-up’ NEE for net land anthropogenic CO(2) uptake of –2.2 ± 0.6 PgC yr(−1) consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000–2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO(2) of 39 PgC yr(−1) with an interquartile of 33–46 PgC yr(−1)—a much smaller portion of net primary productivity than previously reported.