Cargando…

A multiaxial lead-free two-dimensional organic-inorganic perovskite ferroelectric

Two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) have recently gained tremendous interest because of their unique features in contrast to three-dimensional counterparts and traditional 2D materials. However, although some 2D HOIP ferroelectrics have been achieved, the issue of toxic...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Chao-Ran, Luo, Xuzhong, Chen, Xiao-Gang, Song, Xian-Jiang, Zhang, Zhi-Xu, Xiong, Ren-Gen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8288432/
https://www.ncbi.nlm.nih.gov/pubmed/34691638
http://dx.doi.org/10.1093/nsr/nwaa232
Descripción
Sumario:Two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) have recently gained tremendous interest because of their unique features in contrast to three-dimensional counterparts and traditional 2D materials. However, although some 2D HOIP ferroelectrics have been achieved, the issue of toxic Pb and uniaxial nature impede their further application. Herein, for the first time, we report a lead-free 2D HOIP multiaxial ferroelectric, [3,3-difluorocyclobutylammonium](2)CuCl(4) (1), which shows four ferroelectric axes and eight equivalent polarization directions, more than those of the other 2D HOIP ferroelectrics and even the inorganic perovskite ferroelectric BaTiO(3) (three ferroelectric axes and six equivalent polarization directions). 1 also features a high Curie temperature of 380 K and exhibits remarkable thermochromism of color change from green-yellow to dark brown. To our knowledge, 1 is the first multiaxial lead-free 2D HOIP ferroelectric. This work sheds light on the exploration of better lead-free 2D HOIP ferroelectrics.