Cargando…
A powder method for the high-efficacy evaluation of electro-optic crystals
The electro-optic crystal holds great promise for extensive applications in optoelectronics and optical communication. However, the discovery of novel electro-optic crystals is sporadic due to the difficulties of large-sized crystal growth for electro-optic coefficient measurement. Herein, to addres...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8288434/ https://www.ncbi.nlm.nih.gov/pubmed/34691586 http://dx.doi.org/10.1093/nsr/nwaa104 |
Sumario: | The electro-optic crystal holds great promise for extensive applications in optoelectronics and optical communication. However, the discovery of novel electro-optic crystals is sporadic due to the difficulties of large-sized crystal growth for electro-optic coefficient measurement. Herein, to address this issue, a high-efficacy evaluation method using accessible powder samples is proposed in which the second-harmonic-generation effect, infrared reflectance spectrum and Raman spectrum are introduced to predict the magnitude of the electro-optic coefficient. The calculated electro-optic coefficients of numerous reported electro-optic crystals through this approach give universal agreement to the experimental values, evidencing the validity of the strategy. Based on this method, CsLiMoO(4) is screened as a novel potential electro-optic crystal and a high-quality crystal is grown by the Czochralski technique for electro-optic coefficient measurement using the half-wave voltage method, the result of which is also comparable to the calculated value. Consequently, the evaluation strategy presented here will pave a new way to explore promising electro-optic crystals efficiently. |
---|