Cargando…
Towards understanding residual and dilated dense neural networks via convolutional sparse coding
Convolutional neural network (CNN) and its variants have led to many state-of-the-art results in various fields. However, a clear theoretical understanding of such networks is still lacking. Recently, a multilayer convolutional sparse coding (ML-CSC) model has been proposed and proved to equal such...
Autores principales: | Zhang, Zhiyang, Zhang, Shihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8288437/ https://www.ncbi.nlm.nih.gov/pubmed/34691591 http://dx.doi.org/10.1093/nsr/nwaa159 |
Ejemplares similares
-
A residual dense network assisted sparse view reconstruction for breast computed tomography
por: Fu, Zhiyang, et al.
Publicado: (2020) -
Hierarchical Sparse Coding of Objects in Deep Convolutional Neural Networks
por: Liu, Xingyu, et al.
Publicado: (2020) -
Contrast‐enhanced MRI synthesis using dense‐dilated residual convolutions based 3D network toward elimination of gadolinium in neuro‐oncology
por: Osman, Alexander F. I., et al.
Publicado: (2023) -
Classification of asymmetry in mammography via the DenseNet convolutional neural network
por: Liao, Tingting, et al.
Publicado: (2023) -
Sparse Convolutional Neural Networks for Genome-Wide Prediction
por: Waldmann, Patrik, et al.
Publicado: (2020)