Cargando…

Ultra-sensitive hybrid diamond nanothermometer

Nitrogen-vacancy (NV) centers in diamond are promising quantum sensors because of their long spin coherence time under ambient conditions. However, their spin resonances are relatively insensitive to non-magnetic parameters such as temperature. A magnetic-nanoparticle-nanodiamond hybrid thermometer,...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Chu-Feng, Leong, Weng-Hang, Xia, Kangwei, Feng, Xi, Finkler, Amit, Denisenko, Andrej, Wrachtrup, Jörg, Li, Quan, Liu, Ren-Bao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8288462/
https://www.ncbi.nlm.nih.gov/pubmed/34691635
http://dx.doi.org/10.1093/nsr/nwaa194
Descripción
Sumario:Nitrogen-vacancy (NV) centers in diamond are promising quantum sensors because of their long spin coherence time under ambient conditions. However, their spin resonances are relatively insensitive to non-magnetic parameters such as temperature. A magnetic-nanoparticle-nanodiamond hybrid thermometer, where the temperature change is converted to the magnetic field variation near the Curie temperature, were demonstrated to have enhanced temperature sensitivity ([Formula: see text]) (Wang N, Liu G-Q and Leong W-H et al. Phys Rev X 2018; 8: 011042), but the sensitivity was limited by the large spectral broadening of ensemble spins in nanodiamonds. To overcome this limitation, here we show an improved design of a hybrid nanothermometer using a single NV center in a diamond nanopillar coupled with a single magnetic nanoparticle of copper-nickel alloy, and demonstrate a temperature sensitivity of [Formula: see text]. This hybrid design enables detection of 2 mK temperature changes with temporal resolution of 5 ms. The ultra-sensitive nanothermometer offers a new tool to investigate thermal processes in nanoscale systems.