Cargando…

Unveiling the molecule–plasmon interactions in surface-enhanced infrared absorption spectroscopy

Nanostructure-based surface-enhanced infrared absorption (SEIRA) spectroscopy has attracted tremendous interest as an ultrasensitive detection tool that supplies chemical-fingerprint information. The interactions between molecular vibrations and plasmons lead to not only the enhancement of spectral...

Descripción completa

Detalles Bibliográficos
Autores principales: Yi, Jun, You, En-Ming, Ding, Song-Yuan, Tian, Zhong-Qun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8288858/
https://www.ncbi.nlm.nih.gov/pubmed/34692147
http://dx.doi.org/10.1093/nsr/nwaa054
Descripción
Sumario:Nanostructure-based surface-enhanced infrared absorption (SEIRA) spectroscopy has attracted tremendous interest as an ultrasensitive detection tool that supplies chemical-fingerprint information. The interactions between molecular vibrations and plasmons lead to not only the enhancement of spectral intensity, but also the distortion of spectral Lorentzian lineshapes into asymmetric Fano-type or more complicated lineshapes in the SEIRA spectra; this effect hampers the correct readout of vibrational frequencies and intensities for an accurate interpretation of the measured spectra and quantitative analysis. In this work, we investigate the Fano interference between molecular vibrations and plasmons based on exact electrodynamic simulations and theoretical models. We report that, even if the molecular vibrational energy is equal to the plasmon resonant energy, the molecule–nanostructure distance-dependent dipole–dipole interactions, the plasmon-mediated coherent intermolecular interactions and the decay rates of plasmons have a significant impact on the SEIRA lineshapes. This study paves the way for controllable Fano interference at the nanoscale and more studies on plasmon-dressed molecular electronic or vibrational excited states.