Cargando…

Programmable deformation of patterned bimorph actuator swarm

Graphene-based actuators featuring fast and reversible deformation under various external stimuli are promising for soft robotics. However, these bimorph actuators are incapable of complex and programmable 3D deformation, which limits their practical application. Here, inspired from the collective c...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Jia-Nan, Zhang, Yong-Lai, Han, Dong-Dong, Mao, Jiang-Wei, Chen, Zhao-Di, Sun, Hong-Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8288920/
https://www.ncbi.nlm.nih.gov/pubmed/34692096
http://dx.doi.org/10.1093/nsr/nwz219
Descripción
Sumario:Graphene-based actuators featuring fast and reversible deformation under various external stimuli are promising for soft robotics. However, these bimorph actuators are incapable of complex and programmable 3D deformation, which limits their practical application. Here, inspired from the collective coupling and coordination of living cells, we fabricated a moisture-responsive graphene actuator swarm that has programmable shape-changing capability by programming the SU-8 patterns underneath. To get better control over the deformation, we fabricated SU-8 micropattern arrays with specific geometries and orientations on a continuous graphene oxide film, forming a swarm of bimorph actuators. In this way, predictable and complex deformations, including bending, twisting, coiling, asymmetric bending, 3D folding, and combinations of these, have been achieved due to the collective coupling and coordination of the actuator swarm. This work proposes a new way to program the deformation of bilayer actuators, expanding the capabilities of existing bimorph actuators for applications in various smart devices.