Cargando…
Predicting future dynamics from short-term time series using an Anticipated Learning Machine
Predicting time series has significant practical applications over different disciplines. Here, we propose an Anticipated Learning Machine (ALM) to achieve precise future-state predictions based on short-term but high-dimensional data. From non-linear dynamical systems theory, we show that ALM can t...
Autores principales: | Chen, Chuan, Li, Rui, Shu, Lin, He, Zhiyu, Wang, Jining, Zhang, Chengming, Ma, Huanfei, Aihara, Kazuyuki, Chen, Luonan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8288952/ https://www.ncbi.nlm.nih.gov/pubmed/34692127 http://dx.doi.org/10.1093/nsr/nwaa025 |
Ejemplares similares
-
Detecting Causality from Nonlinear Dynamics with Short-term Time Series
por: Ma, Huanfei, et al.
Publicado: (2014) -
Randomly distributed embedding making short-term high-dimensional data predictable
por: Ma, Huanfei, et al.
Publicado: (2018) -
Partial cross mapping eliminates indirect causal influences
por: Leng, Siyang, et al.
Publicado: (2020) -
Identifying early-warning signals of critical transitions with strong noise by dynamical network markers
por: Liu, Rui, et al.
Publicado: (2015) -
Identifying critical differentiation state of MCF-7 cells for breast cancer by dynamical network biomarkers
por: Chen, Pei, et al.
Publicado: (2015)