Cargando…
Bioinspired hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers
Bio-sourced nanocellulosic materials are promising candidates for spinning high-performance sustainable macrofibers for advanced applications. Various strategies have been pursued to gain nanocellulose-based macrofibers with improved strength. However, nearly all of them have been achieved at the ex...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289019/ https://www.ncbi.nlm.nih.gov/pubmed/34692019 http://dx.doi.org/10.1093/nsr/nwz077 |
Sumario: | Bio-sourced nanocellulosic materials are promising candidates for spinning high-performance sustainable macrofibers for advanced applications. Various strategies have been pursued to gain nanocellulose-based macrofibers with improved strength. However, nearly all of them have been achieved at the expense of their elongation and toughness. Inspired by the widely existed hierarchical helical and nanocomposite structural features in biosynthesized fibers exhibiting exceptional combinations of strength and toughness, we report a design strategy to make nanocellulose-based macrofibers with similar characteristics. By combining a facile wet-spinning process with a subsequent multiple wet-twisting procedure, we successfully obtain biomimetic hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers, realizing impressive improvement in their tensile strength, elongation and toughness simultaneously. The achievement certifies the validity of the bioinspired hierarchical helical and nanocomposite structural design proposed here. This bioinspired design strategy provides a potential platform for further optimizing or creating many more strong and tough nanocomposite fiber materials for diverse applications. |
---|