Cargando…

A chemical perspective on high pressure crystal structures and properties

The general availability of third generation synchrotron sources has ushered in a new era of high pressure research. The crystal structure of materials under compression can now be determined by X-ray diffraction using powder samples and, more recently, from multi-nano single crystal diffraction. Co...

Descripción completa

Detalles Bibliográficos
Autor principal: Tse, John S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289026/
https://www.ncbi.nlm.nih.gov/pubmed/34692029
http://dx.doi.org/10.1093/nsr/nwz144
Descripción
Sumario:The general availability of third generation synchrotron sources has ushered in a new era of high pressure research. The crystal structure of materials under compression can now be determined by X-ray diffraction using powder samples and, more recently, from multi-nano single crystal diffraction. Concurrently, these experimental advancements are accompanied by a rapid increase in computational capacity and capability, enabling the application of sophisticated quantum calculations to explore a variety of material properties. One of the early surprises is the finding that simple metallic elements do not conform to the general expectation of adopting 3D close-pack structures at high pressure. Instead, many novel open structures have been identified with no known analogues at ambient pressure. The occurrence of these structural types appears to be random with no rules governing their formation. The adoption of an open structure at high pressure suggested the presence of directional bonds. Therefore, a localized atomic hybrid orbital description of the chemical bonding may be appropriate. Here, the theoretical foundation and experimental evidence supporting this approach to the elucidation of the high pressure crystal structures of group I and II elements and polyhydrides are reviewed. It is desirable and advantageous to extend and apply established chemical principles to the study of the chemistry and chemical bonding of materials at high pressure.