Cargando…
Evolution and distribution of medullary bone: evidence from a new Early Cretaceous enantiornithine bird
Living birds are unique among vertebrates in the formation of a female-specific bone tissue called medullary bone (MB) that is strictly associated with reproductive activity. MB is a rapidly mobilized source of calcium and phosphorus for the production of eggshell. Among living taxa, its skeletal di...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289052/ https://www.ncbi.nlm.nih.gov/pubmed/34692126 http://dx.doi.org/10.1093/nsr/nwz214 |
_version_ | 1783724218278477824 |
---|---|
author | Wang, Min O’Connor, Jingmai K Bailleul, Alida M Li, Zhiheng |
author_facet | Wang, Min O’Connor, Jingmai K Bailleul, Alida M Li, Zhiheng |
author_sort | Wang, Min |
collection | PubMed |
description | Living birds are unique among vertebrates in the formation of a female-specific bone tissue called medullary bone (MB) that is strictly associated with reproductive activity. MB is a rapidly mobilized source of calcium and phosphorus for the production of eggshell. Among living taxa, its skeletal distribution can be highly extensive such that it even exists in the ribs of some species. Due to its ephemeral nature, MB is rarely fossilized and so little is understood with regard to the origin of MB and its skeletal distribution in early taxa. Here we describe a new Early Cretaceous enantiornithine bird, Mirusavis parvus, gen. et. sp. nov., indicating that skeleton-wide distribution of MB appeared early in avian evolution. We suggest that this represents the plesiomorphic condition for the Aves and that the distribution of MB observed among extant neornithines is a product of increased pneumatization in this lineage and natural selection for more efficient distribution of MB. |
format | Online Article Text |
id | pubmed-8289052 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-82890522021-10-21 Evolution and distribution of medullary bone: evidence from a new Early Cretaceous enantiornithine bird Wang, Min O’Connor, Jingmai K Bailleul, Alida M Li, Zhiheng Natl Sci Rev Research Article Living birds are unique among vertebrates in the formation of a female-specific bone tissue called medullary bone (MB) that is strictly associated with reproductive activity. MB is a rapidly mobilized source of calcium and phosphorus for the production of eggshell. Among living taxa, its skeletal distribution can be highly extensive such that it even exists in the ribs of some species. Due to its ephemeral nature, MB is rarely fossilized and so little is understood with regard to the origin of MB and its skeletal distribution in early taxa. Here we describe a new Early Cretaceous enantiornithine bird, Mirusavis parvus, gen. et. sp. nov., indicating that skeleton-wide distribution of MB appeared early in avian evolution. We suggest that this represents the plesiomorphic condition for the Aves and that the distribution of MB observed among extant neornithines is a product of increased pneumatization in this lineage and natural selection for more efficient distribution of MB. Oxford University Press 2020-06 2019-12-19 /pmc/articles/PMC8289052/ /pubmed/34692126 http://dx.doi.org/10.1093/nsr/nwz214 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Wang, Min O’Connor, Jingmai K Bailleul, Alida M Li, Zhiheng Evolution and distribution of medullary bone: evidence from a new Early Cretaceous enantiornithine bird |
title | Evolution and distribution of medullary bone: evidence from a new Early Cretaceous enantiornithine bird |
title_full | Evolution and distribution of medullary bone: evidence from a new Early Cretaceous enantiornithine bird |
title_fullStr | Evolution and distribution of medullary bone: evidence from a new Early Cretaceous enantiornithine bird |
title_full_unstemmed | Evolution and distribution of medullary bone: evidence from a new Early Cretaceous enantiornithine bird |
title_short | Evolution and distribution of medullary bone: evidence from a new Early Cretaceous enantiornithine bird |
title_sort | evolution and distribution of medullary bone: evidence from a new early cretaceous enantiornithine bird |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289052/ https://www.ncbi.nlm.nih.gov/pubmed/34692126 http://dx.doi.org/10.1093/nsr/nwz214 |
work_keys_str_mv | AT wangmin evolutionanddistributionofmedullaryboneevidencefromanewearlycretaceousenantiornithinebird AT oconnorjingmaik evolutionanddistributionofmedullaryboneevidencefromanewearlycretaceousenantiornithinebird AT bailleulalidam evolutionanddistributionofmedullaryboneevidencefromanewearlycretaceousenantiornithinebird AT lizhiheng evolutionanddistributionofmedullaryboneevidencefromanewearlycretaceousenantiornithinebird |