Cargando…

Calculation and realization of new method grey residual error correction model

Aiming at the problem of prediction accuracy of stochastic volatility series, this paper proposes a method to optimize the grey model(GM(1,1)) from the perspective of residual error. In this study, a new fitting method is firstly used, which combines the wavelet function basis and the least square m...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Lifang, Chen, Xiangyang, Wang, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289091/
https://www.ncbi.nlm.nih.gov/pubmed/34280218
http://dx.doi.org/10.1371/journal.pone.0254154
Descripción
Sumario:Aiming at the problem of prediction accuracy of stochastic volatility series, this paper proposes a method to optimize the grey model(GM(1,1)) from the perspective of residual error. In this study, a new fitting method is firstly used, which combines the wavelet function basis and the least square method to fit the residual data of the true value and the predicted value of the grey model(GM(1,1)). The residual prediction function is constructed by using the fitting method. Then, the prediction function of the grey model(GM(1,1)) is modified by the residual prediction function. Finally, an example of the wavelet residual-corrected grey prediction model (WGM) is obtained. The test results show that the fitting accuracy of the wavelet residual-corrected grey prediction model has irreplaceable advantages.