Cargando…

Double-Decker Silsesquioxanes Self-Assembled in One-Dimensional Coordination Polymeric Nanofibers with Emission Properties

[Image: see text] The urgent needs for photoactive materials in industry drive fast evolution of synthetic procedures in many branches of chemistry, including the chemistry of silsesquioxanes. Here, we disclose an effective protocol for the synthesis of novel double-decker silsesquioxanes decorated...

Descripción completa

Detalles Bibliográficos
Autores principales: Duszczak, Julia, Mituła, Katarzyna, Santiago-Portillo, Andrea, Soumoy, Loraine, Rzonsowska, Monika, Januszewski, Rafał, Fusaro, Luca, Aprile, Carmela, Dudziec, Beata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289186/
https://www.ncbi.nlm.nih.gov/pubmed/33961397
http://dx.doi.org/10.1021/acsami.1c02510
Descripción
Sumario:[Image: see text] The urgent needs for photoactive materials in industry drive fast evolution of synthetic procedures in many branches of chemistry, including the chemistry of silsesquioxanes. Here, we disclose an effective protocol for the synthesis of novel double-decker silsesquioxanes decorated with two (styrylethynylphenyl)terpyridine moieties (DDSQ_Ta-b). The synthesis strategy involves a series of silylative and Sonogashira coupling reactions and is reported for the first time. DDSQ_Ta-b were employed as nanocage ligands to promote self-assembly in the presence of transition metals (TM), i.e., Zn(2+), Fe(2+), and Eu(3+) ions, to form one-dimensional (1D) coordination polymeric nanofibers. Additionally, ultraviolet-promoted and reversible E–Z isomerization of the C=C bond within the ligand structures may be exploited to tune their emission properties. These findings render such complexes promising candidates for applications in materials chemistry. This is the first example of 1D coordination polymers bearing DDSQ-based nodes with TM ions.