Cargando…
HADLN: Hybrid Attention-Based Deep Learning Network for Automated Arrhythmia Classification
In recent years, with the development of artificial intelligence, deep learning model has achieved initial success in ECG data analysis, especially the detection of atrial fibrillation. In order to solve the problems of ignoring the correlation between contexts and gradient dispersion in traditional...
Autores principales: | Jiang, Mingfeng, Gu, Jiayan, Li, Yang, Wei, Bo, Zhang, Jucheng, Wang, Zhikang, Xia, Ling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289344/ https://www.ncbi.nlm.nih.gov/pubmed/34290619 http://dx.doi.org/10.3389/fphys.2021.683025 |
Ejemplares similares
-
Cardiac Arrhythmia classification based on 3D recurrence plot analysis and deep learning
por: Zhang, Hua, et al.
Publicado: (2022) -
Deep learning for ECG Arrhythmia detection and classification: an overview of progress for period 2017–2023
por: Ansari, Yaqoob, et al.
Publicado: (2023) -
Generalizable Beat-by-Beat Arrhythmia Detection by Using Weakly Supervised Deep Learning
por: Liu, Yang, et al.
Publicado: (2022) -
Automated Arrhythmia Classification Using Farmland Fertility Algorithm with Hybrid Deep Learning Model on Internet of Things Environment
por: Almasoud, Ahmed S., et al.
Publicado: (2023) -
A Hybrid Deep Learning Approach for ECG-Based Arrhythmia Classification
por: Madan, Parul, et al.
Publicado: (2022)