Cargando…
Caveolin-1 promotes tumor cell proliferation and vasculogenic mimicry formation in human glioma
Vasculogenic mimicry (VM) plays an important role in human glioma progression and resistance to antiangiogenic therapy as a compensatory neovascularization mechanism in malignant tumors. Caveolin-1 (Cav-1) has been found to contribute to VM formation. However, it remains largely unknown whether Cav-...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Associação Brasileira de Divulgação Científica
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289350/ https://www.ncbi.nlm.nih.gov/pubmed/34287575 http://dx.doi.org/10.1590/1414-431X2020e10653 |
_version_ | 1783724286387683328 |
---|---|
author | Chen, Wenli Cheng, Xing Wang, Xiaobo Hu, Wenjie Wang, Jinshan Liao, Chuangxin |
author_facet | Chen, Wenli Cheng, Xing Wang, Xiaobo Hu, Wenjie Wang, Jinshan Liao, Chuangxin |
author_sort | Chen, Wenli |
collection | PubMed |
description | Vasculogenic mimicry (VM) plays an important role in human glioma progression and resistance to antiangiogenic therapy as a compensatory neovascularization mechanism in malignant tumors. Caveolin-1 (Cav-1) has been found to contribute to VM formation. However, it remains largely unknown whether Cav-1 expression correlates with VM in glioma. In this study, we examined CAV-1 expression levels and VM in human glioma cell lines and in 94 human gliomas with different grades of malignancy, and present Cox proportional hazards regression. The molecular role of Cav-1 in glioma cells was investigated using quantitative polymerase chain reaction (qRT-PCR) assays, western blotting, CCK-8 assays, and tubule formation assays. Cav-1 expression and VM formation were positively correlated with each other and both were closely associated with glioma development and progression as evidenced by the presence of cystic tumor, shortened survival time, and advanced-stage glioma in glioma patients with Cav-1 overexpression/increased VM formation. Cav-1 promoted U251 glioma cell proliferation and VM formation in a Matrigel-based 3D culture model. VM-associated factors including hypoxia-inducible factor 1α (HIF-1α) and p-Akt was significantly elevated by Cav-1 overexpression but suppressed by siCav-1 in U251 cells. Collectively, our study identified Cav-1 as an important regulator of glioma cell proliferation and VM formation, contributing to glioma development and progression. |
format | Online Article Text |
id | pubmed-8289350 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Associação Brasileira de Divulgação Científica |
record_format | MEDLINE/PubMed |
spelling | pubmed-82893502021-08-02 Caveolin-1 promotes tumor cell proliferation and vasculogenic mimicry formation in human glioma Chen, Wenli Cheng, Xing Wang, Xiaobo Hu, Wenjie Wang, Jinshan Liao, Chuangxin Braz J Med Biol Res Research Article Vasculogenic mimicry (VM) plays an important role in human glioma progression and resistance to antiangiogenic therapy as a compensatory neovascularization mechanism in malignant tumors. Caveolin-1 (Cav-1) has been found to contribute to VM formation. However, it remains largely unknown whether Cav-1 expression correlates with VM in glioma. In this study, we examined CAV-1 expression levels and VM in human glioma cell lines and in 94 human gliomas with different grades of malignancy, and present Cox proportional hazards regression. The molecular role of Cav-1 in glioma cells was investigated using quantitative polymerase chain reaction (qRT-PCR) assays, western blotting, CCK-8 assays, and tubule formation assays. Cav-1 expression and VM formation were positively correlated with each other and both were closely associated with glioma development and progression as evidenced by the presence of cystic tumor, shortened survival time, and advanced-stage glioma in glioma patients with Cav-1 overexpression/increased VM formation. Cav-1 promoted U251 glioma cell proliferation and VM formation in a Matrigel-based 3D culture model. VM-associated factors including hypoxia-inducible factor 1α (HIF-1α) and p-Akt was significantly elevated by Cav-1 overexpression but suppressed by siCav-1 in U251 cells. Collectively, our study identified Cav-1 as an important regulator of glioma cell proliferation and VM formation, contributing to glioma development and progression. Associação Brasileira de Divulgação Científica 2021-07-16 /pmc/articles/PMC8289350/ /pubmed/34287575 http://dx.doi.org/10.1590/1414-431X2020e10653 Text en https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chen, Wenli Cheng, Xing Wang, Xiaobo Hu, Wenjie Wang, Jinshan Liao, Chuangxin Caveolin-1 promotes tumor cell proliferation and vasculogenic mimicry formation in human glioma |
title | Caveolin-1 promotes tumor cell proliferation and vasculogenic mimicry formation in human glioma |
title_full | Caveolin-1 promotes tumor cell proliferation and vasculogenic mimicry formation in human glioma |
title_fullStr | Caveolin-1 promotes tumor cell proliferation and vasculogenic mimicry formation in human glioma |
title_full_unstemmed | Caveolin-1 promotes tumor cell proliferation and vasculogenic mimicry formation in human glioma |
title_short | Caveolin-1 promotes tumor cell proliferation and vasculogenic mimicry formation in human glioma |
title_sort | caveolin-1 promotes tumor cell proliferation and vasculogenic mimicry formation in human glioma |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289350/ https://www.ncbi.nlm.nih.gov/pubmed/34287575 http://dx.doi.org/10.1590/1414-431X2020e10653 |
work_keys_str_mv | AT chenwenli caveolin1promotestumorcellproliferationandvasculogenicmimicryformationinhumanglioma AT chengxing caveolin1promotestumorcellproliferationandvasculogenicmimicryformationinhumanglioma AT wangxiaobo caveolin1promotestumorcellproliferationandvasculogenicmimicryformationinhumanglioma AT huwenjie caveolin1promotestumorcellproliferationandvasculogenicmimicryformationinhumanglioma AT wangjinshan caveolin1promotestumorcellproliferationandvasculogenicmimicryformationinhumanglioma AT liaochuangxin caveolin1promotestumorcellproliferationandvasculogenicmimicryformationinhumanglioma |