Cargando…
MAGUS: Multiple sequence Alignment using Graph clUStering
MOTIVATION: The estimation of large multiple sequence alignments (MSAs) is a basic bioinformatics challenge. Divide-and-conquer is a useful approach that has been shown to improve the scalability and accuracy of MSA estimation in established methods such as SATé and PASTA. In these divide-and-conque...
Autores principales: | Smirnov, Vladimir, Warnow, Tandy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289385/ https://www.ncbi.nlm.nih.gov/pubmed/33252662 http://dx.doi.org/10.1093/bioinformatics/btaa992 |
Ejemplares similares
-
MAGUS+eHMMs: improved multiple sequence alignment accuracy for fragmentary sequences
por: Shen, Chengze, et al.
Publicado: (2021) -
Recursive MAGUS: Scalable and accurate multiple sequence alignment
por: Smirnov, Vladimir
Publicado: (2021) -
HMMerge: an ensemble method for multiple sequence alignment
por: Park, Minhyuk, et al.
Publicado: (2023) -
Scaling statistical multiple sequence alignment to large datasets
por: Nute, Michael, et al.
Publicado: (2016) -
WITCH-NG: efficient and accurate alignment of datasets with sequence length heterogeneity
por: Liu, Baqiao, et al.
Publicado: (2023)