Cargando…
The Optimal Machine Learning-Based Missing Data Imputation for the Cox Proportional Hazard Model
An adequate imputation of missing data would significantly preserve the statistical power and avoid erroneous conclusions. In the era of big data, machine learning is a great tool to infer the missing values. The root means square error (RMSE) and the proportion of falsely classified entries (PFC) a...
Autores principales: | Guo, Chao-Yu, Yang, Ying-Chen, Chen, Yi-Hau |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289437/ https://www.ncbi.nlm.nih.gov/pubmed/34291028 http://dx.doi.org/10.3389/fpubh.2021.680054 |
Ejemplares similares
-
Comparison of imputation methods for handling missing covariate data when fitting a Cox proportional hazards model: a resampling study
por: Marshall, Andrea, et al.
Publicado: (2010) -
Patient Flow Dynamics in Hospital Systems During Times of COVID-19: Cox Proportional Hazard Regression Analysis
por: Bhandari, Sudhir, et al.
Publicado: (2020) -
Relaxing the independent censoring assumption in the Cox proportional hazards model using multiple imputation
por: Jackson, Dan, et al.
Publicado: (2014) -
Survival Prediction Based on Compound Covariate under Cox Proportional Hazard Models
por: Emura, Takeshi, et al.
Publicado: (2012) -
Imputing missing covariate values for the Cox model
por: White, Ian R, et al.
Publicado: (2009)