Cargando…
Active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminution‐derived hydrogen
The basal zone of glaciers is characterized by physicochemical properties that are distinct from firnified ice due to strong interactions with underlying substrate and bedrock. Basal ice (BI) ecology and the roles that the microbiota play in biogeochemical cycling, weathering, and proglacial soil fo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289488/ https://www.ncbi.nlm.nih.gov/pubmed/34459543 http://dx.doi.org/10.1002/mbo3.1200 |
_version_ | 1783724307719913472 |
---|---|
author | Toubes‐Rodrigo, Mario Potgieter‐Vermaak, Sanja Sen, Robin Oddsdóttir, Edda S. Elliott, David Cook, Simon |
author_facet | Toubes‐Rodrigo, Mario Potgieter‐Vermaak, Sanja Sen, Robin Oddsdóttir, Edda S. Elliott, David Cook, Simon |
author_sort | Toubes‐Rodrigo, Mario |
collection | PubMed |
description | The basal zone of glaciers is characterized by physicochemical properties that are distinct from firnified ice due to strong interactions with underlying substrate and bedrock. Basal ice (BI) ecology and the roles that the microbiota play in biogeochemical cycling, weathering, and proglacial soil formation remain poorly described. We report on basal ice geochemistry, bacterial diversity (16S rRNA gene phylogeny), and inferred ecological roles at three temperate Icelandic glaciers. We sampled three physically distinct basal ice facies (stratified, dispersed, and debris bands) and found facies dependent on biological similarities and differences; basal ice character is therefore an important sampling consideration in future studies. Based on a high abundance of silicates and Fe‐containing minerals and, compared to earlier BI literature, total C was detected that could sustain the basal ice ecosystem. It was hypothesized that C‐fixing chemolithotrophic bacteria, especially Fe‐oxidisers and hydrogenotrophs, mutualistically support associated heterotrophic communities. Basal ice‐derived rRNA gene sequences corresponding to genera known to harbor hydrogenotrophic methanogens suggest that silicate comminution‐derived hydrogen can also be utilized for methanogenesis. PICRUSt‐predicted metabolism suggests that methane metabolism and C‐fixation pathways could be highly relevant in BI, indicating the importance of these metabolic routes. The nutrients and microbial communities release from melting basal ice may play an important role in promoting pioneering communities establishment and soil development in deglaciating forelands. |
format | Online Article Text |
id | pubmed-8289488 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-82894882021-07-21 Active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminution‐derived hydrogen Toubes‐Rodrigo, Mario Potgieter‐Vermaak, Sanja Sen, Robin Oddsdóttir, Edda S. Elliott, David Cook, Simon Microbiologyopen Original Articles The basal zone of glaciers is characterized by physicochemical properties that are distinct from firnified ice due to strong interactions with underlying substrate and bedrock. Basal ice (BI) ecology and the roles that the microbiota play in biogeochemical cycling, weathering, and proglacial soil formation remain poorly described. We report on basal ice geochemistry, bacterial diversity (16S rRNA gene phylogeny), and inferred ecological roles at three temperate Icelandic glaciers. We sampled three physically distinct basal ice facies (stratified, dispersed, and debris bands) and found facies dependent on biological similarities and differences; basal ice character is therefore an important sampling consideration in future studies. Based on a high abundance of silicates and Fe‐containing minerals and, compared to earlier BI literature, total C was detected that could sustain the basal ice ecosystem. It was hypothesized that C‐fixing chemolithotrophic bacteria, especially Fe‐oxidisers and hydrogenotrophs, mutualistically support associated heterotrophic communities. Basal ice‐derived rRNA gene sequences corresponding to genera known to harbor hydrogenotrophic methanogens suggest that silicate comminution‐derived hydrogen can also be utilized for methanogenesis. PICRUSt‐predicted metabolism suggests that methane metabolism and C‐fixation pathways could be highly relevant in BI, indicating the importance of these metabolic routes. The nutrients and microbial communities release from melting basal ice may play an important role in promoting pioneering communities establishment and soil development in deglaciating forelands. John Wiley and Sons Inc. 2021-07-19 /pmc/articles/PMC8289488/ /pubmed/34459543 http://dx.doi.org/10.1002/mbo3.1200 Text en © 2021 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Toubes‐Rodrigo, Mario Potgieter‐Vermaak, Sanja Sen, Robin Oddsdóttir, Edda S. Elliott, David Cook, Simon Active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminution‐derived hydrogen |
title | Active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminution‐derived hydrogen |
title_full | Active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminution‐derived hydrogen |
title_fullStr | Active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminution‐derived hydrogen |
title_full_unstemmed | Active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminution‐derived hydrogen |
title_short | Active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminution‐derived hydrogen |
title_sort | active microbial ecosystem in glacier basal ice fuelled by iron and silicate comminution‐derived hydrogen |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289488/ https://www.ncbi.nlm.nih.gov/pubmed/34459543 http://dx.doi.org/10.1002/mbo3.1200 |
work_keys_str_mv | AT toubesrodrigomario activemicrobialecosysteminglacierbasalicefuelledbyironandsilicatecomminutionderivedhydrogen AT potgietervermaaksanja activemicrobialecosysteminglacierbasalicefuelledbyironandsilicatecomminutionderivedhydrogen AT senrobin activemicrobialecosysteminglacierbasalicefuelledbyironandsilicatecomminutionderivedhydrogen AT oddsdottireddas activemicrobialecosysteminglacierbasalicefuelledbyironandsilicatecomminutionderivedhydrogen AT elliottdavid activemicrobialecosysteminglacierbasalicefuelledbyironandsilicatecomminutionderivedhydrogen AT cooksimon activemicrobialecosysteminglacierbasalicefuelledbyironandsilicatecomminutionderivedhydrogen |