Cargando…

Synergistic Antioxidant Effects of Araloside A and L-Ascorbic Acid on H(2)O(2)-Induced HEK293 Cells: Regulation of Cellular Antioxidant Status

Araloside A is a pentacyclic triterpenoid saponin, and L-ascorbic acid is a globally recognized antioxidant. In this study, coadministered araloside A and L-ascorbic acid were found to have a strong synergistic antioxidant effect, and correlations between cellular antioxidant indexes and free radica...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Yaqin, Zhang, Xiuling, Du, Meiling, Li, Fengfeng, Xiao, Manyu, Zhang, Wentao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8289608/
https://www.ncbi.nlm.nih.gov/pubmed/34336129
http://dx.doi.org/10.1155/2021/9996040
Descripción
Sumario:Araloside A is a pentacyclic triterpenoid saponin, and L-ascorbic acid is a globally recognized antioxidant. In this study, coadministered araloside A and L-ascorbic acid were found to have a strong synergistic antioxidant effect, and correlations between cellular antioxidant indexes and free radical scavenging ability were found. Individual and combined pretreatment with araloside A and L-ascorbic acid increased both cell viability and antioxidant enzyme activity and inhibited the release of lactate dehydrogenase (LDH); the accumulation of malondialdehyde (MDA), lipid peroxidation (LPO) products, and H(2)O(2); and the production of intracellular reactive oxygen species (ROS), protein carbonyls, and 8-hydroxy-2-deoxy guanosine (8-OHdG). Free radical scavenging ability was positively correlated with superoxide dismutase (SOD) and catalase (CAT) activity, the glutathione (GSH)/oxidized glutathione (GSSG) ratio, and total antioxidant capacity (T-AOC). Our study is the first investigation of araloside A and L-ascorbic acid coadministration for the treatment of diseases caused by oxidative stress. The synergistic antioxidant effects of araloside A and L-ascorbic acid support their potential as functional food ingredients for the elimination of oxidative stress-induced adverse reactions.